@phdthesis{He2023, author = {He, Yangyang}, title = {Extracellular vesicles as the potential mediators of psychosocial stress contribution to osteoporosis}, doi = {10.25932/publishup-59437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-594372}, school = {Universit{\"a}t Potsdam}, pages = {70}, year = {2023}, abstract = {Background: The characteristics of osteoporosis are decreased bone mass and destruction towards the microarchitecture of bone tissue, which raises the risk of fracture. Psychosocialstress and osteoporosis are linked by sympathetic nervous system, hypothalamic-pituitary-adrenal axis, and other endocrine factors. Psychosocial stress causes a series of effects on the organism, and this long-term depletion at the cellular level is considered to be mitochondrial allostatic load, including mitochondrial dysfunction and oxidative stress. Extracellular vesicles (EVs) are involved in the mitochondrial allostatic load process and may as biomarkers in this setting. As critical participants during cell-to-cell communications, EVs serve as transport vehicles for nucleic acid and proteins, alter the phenotypic and functional characteristics of their target cells, and promote cell-to-cell contact. And hence, they play a significant role in the diagnosis and therapy of many diseases, such as osteoporosis. Aim: This narrative review attempts to outline the features of EVs, investigate their involvement in both psychosocial stress and osteoporosis, and analyze if EVs can be potential mediators between both. Methods: The online database from PubMed, Google Scholar, and Science Direct were searched for keywords related to the main topic of this study, and the availability of all the selected studies was verified. Afterward, the findings from the articles were summarized and synthesized. Results: Psychosocial stress affects bone remodeling through increased neurotransmitters such as glucocorticoids and catecholamines, as well as increased glucose metabolism. Furthermore, psychosocial stress leads to mitochondrial allostatic load, including oxidative stress, which may affect bone remodeling. In vitro and in vivo data suggest EVs might involve in the link between psychosocial stress and bone remodeling through the transfer of bioactive substances and thus be a potential mediator of psychosocial stress leading to osteoporosis. Conclusions: According to the included studies, psychosocial stress affects bone remodeling, leading to osteoporosis. By summarizing the specific properties of EVs and the function of EVs in both psychosocial stress and osteoporosis, respectively, it has been demonstrated that EVs are possible mediators of both, and have the prospects to be useful in innovative research areas.}, language = {en} }