@article{MutothyaXuLietal.2021, author = {Mutothya, Nicholas Mwilu and Xu, Yong and Li, Yongge and Metzler, Ralf}, title = {Characterising stochastic motion in heterogeneous media driven by coloured non-Gaussian noise}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {54}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {29}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/abfba6}, pages = {31}, year = {2021}, abstract = {We study the stochastic motion of a test particle in a heterogeneous medium in terms of a position dependent diffusion coefficient mimicking measured deterministic diffusivity gradients in biological cells or the inherent heterogeneity of geophysical systems. Compared to previous studies we here investigate the effect of the interplay of anomalous diffusion effected by position dependent diffusion coefficients and coloured non-Gaussian noise. The latter is chosen to be distributed according to Tsallis' q-distribution, representing a popular example for a non-extensive statistic. We obtain the ensemble and time averaged mean squared displacements for this generalised process and establish its non-ergodic properties as well as analyse the non-Gaussian nature of the associated displacement distribution. We consider both non-stratified and stratified environments.}, language = {en} } @unpublished{HenkelPieplow2014, author = {Henkel, Carsten and Pieplow, Gregor}, title = {Reply to Comment on 'Fully covariant radiation force on a polarizable particle'}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/11/118002}, pages = {8}, year = {2014}, abstract = {We argue that the theories of Volokitin and Persson (2014 New J. Phys. 16 118001), Dedkov and Kyasov (2008 J. Phys.: Condens. Matter 20 354006), and Pieplow and Henkel (2013 New J. Phys. 15 023027) agree on the electromagnetic force on a small, polarizable particle that is moving parallel to a planar, macroscopic body, as far as the contribution of evanescent waves is concerned. The apparent differences are discussed in detail and explained by choices of units and integral transformations. We point out in particular the role of the Lorentz contraction in the procedure used by Volokitin and Persson, where a macroscopic body is 'diluted' to obtain the force on a small particle. Differences that appear in the contribution of propagating photons are briefly mentioned.}, language = {en} } @article{VlasovKomarovPikovskij2015, author = {Vlasov, Vladimir and Komarov, Maxim and Pikovskij, Arkadij}, title = {Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/10/105101}, pages = {16}, year = {2015}, abstract = {We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution.}, language = {en} } @article{GandhimathiRajasekarKurths2006, author = {Gandhimathi, V. M. and Rajasekar, S. and Kurths, J{\"u}rgen}, title = {Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators}, series = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, volume = {360}, journal = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, doi = {10.1016/j.physleta.2006.08.051}, pages = {279 -- 286}, year = {2006}, abstract = {We study the overdamped version of two coupled anharmonic oscillators under the influence of both low- and high-frequency forces respectively and a Gaussian noise term added to one of the two state variables of the system. The dynamics of the system is first studied in the presence of both forces separately without noise. In the presence of only one of the forces, no resonance behaviour is observed, however, hysteresis happens there. Then the influence of the high-frequency force in the presence of a low-frequency, i.e. biharmonic forcing, is studied. Vibrational resonance is found to occur when the amplitude of the high-frequency force is varied. The resonance curve resembles a stochastic resonance-like curve. It is maximum at the value of g at which the orbit lies in one well during one half of the drive cycle of the low-frequency force and in the other for the remaining half cycle. Vibrational resonance is characterized using the response amplitude and mean residence time. We show the occurrence of stochastic resonance behaviour in the overdamped system by replacing the high-frequency force by Gaussian noise. Similarities and differences between both types of resonance are presented. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} }