@misc{SpricigoDronovLisdatetal.2009, author = {Spricigo, Roberto and Dronov, Roman and Lisdat, Fred and Leimk{\"u}hler, Silke and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {945}, issn = {1866-8372}, doi = {10.25932/publishup-43117}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431176}, pages = {225 -- 233}, year = {2009}, abstract = {An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V ( vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 mu M sulfite with a sensitivity of 2.19 mA M-1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8\% and lost 20\% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.}, language = {en} } @article{KrylovAdamzigWalteretal.2006, author = {Krylov, Andrey. V. and Adamzig, H. and Walter, A. D. and Loechel, B. and Kurth, E. and Pulz, O. and Szeponik, Jan and Wegerich, Franziska and Lisdat, Fred}, title = {Parallel generation and detection of superoxide and hydrogen peroxide in a fluidic chip}, series = {Sensors and actuators : B, Chemical}, volume = {119}, journal = {Sensors and actuators : B, Chemical}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0925-4005}, doi = {10.1016/j.snb.2005.11.062}, pages = {118 -- 126}, year = {2006}, abstract = {A fluidic chip system was developed, which combines a stable generation of superoxide radicals and hydrogen peroxide with their sensorial detection. The generation of both reactive oxygen species was achieved by immobilization of xanthine oxidase on controlled pore glass in a reaction chamber. Antioxidants can be introduced into the fluidic chip system by means of mixing chamber. The detection of both species is based on the amperometric principle using a biosensor chip with two working electrodes. As sensing protein for both electrodes cytochrome c was used. The novel system was designed for the quantification of the antioxidant efficiency of different potential scavengers of the respective reactive species in an aqueous medium. Several model antioxidants such as ascorbic acid or catalase have been tested under flow conditions.}, language = {en} }