@article{HortobagyiUematsuSandersetal.2018, author = {Hortobagyi, Tibor and Uematsu, Azusa and Sanders, Lianne and Kliegl, Reinhold and Tollar, Jozsef and Moraes, Renato and Granacher, Urs}, title = {Beam Walking to Assess Dynamic Balance in Health and Disease}, series = {Gerontology}, volume = {65}, journal = {Gerontology}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000493360}, pages = {332 -- 339}, year = {2018}, abstract = {Background: Dynamic balance keeps the vertical projection of the center of mass within the base of support while walking. Dynamic balance tests are used to predict the risks of falls and eventual falls. The psychometric properties of most dynamic balance tests are unsatisfactory and do not comprise an actual loss of balance while walking. Objectives: Using beam walking distance as a measure of dynamic balance, the BEAM consortium will determine the psychometric properties, lifespan and patient reference values, the relationship with selected "dynamic balance tests," and the accuracy of beam walking distance to predict falls. Methods: This cross-sectional observational study will examine healthy adults in 7 decades (n = 432) at 4 centers. Center 5 will examine patients (n = 100) diagnosed with Parkinson's disease, multiple sclerosis, stroke, and balance disorders. In test 1, all participants will be measured for demographics, medical history, muscle strength, gait, static balance, dynamic balance using beam walking under single (beam walking only) and dual task conditions (beam walking while concurrently performing an arithmetic task), and several cognitive functions. Patients and healthy participants age 50 years or older will be additionally measured for fear of falling, history of falls, miniBESTest, functional reach on a force platform, timed up and go, and reactive balance. All participants age 50 years or older will be recalled to report fear of falling and fall history 6 and 12 months after test 1. In test 2, seven to ten days after test 1, healthy young adults and age 50 years or older (n = 40) will be retested for reliability of beam walking performance. Conclusion: We expect to find that beam walking performance vis-{\`a}-vis the traditionally used balance outcomes predicts more accurately fall risks and falls. Clinical Trial Registration Number: NCT03532984.}, language = {en} } @article{HeinzelLorenzQuynhLamDuongetal.2017, author = {Heinzel, Stephan and Lorenz, Robert C. and Quynh-Lam Duong, and Rapp, Michael Armin and Deserno, Lorenz}, title = {Prefrontal-parietal effective connectivity during working memory in older adults}, series = {Neurobiology of Aging}, volume = {57}, journal = {Neurobiology of Aging}, publisher = {Elsevier}, address = {New York}, issn = {0197-4580}, doi = {10.1016/j.neurobiolaging.2017.05.005}, pages = {18 -- 27}, year = {2017}, abstract = {Theoretical models and preceding studies have described age-related alterations in neuronal activation of frontoparietal regions in a working memory (WM)load-dependent manner. However, to date, underlying neuronal mechanisms of these WM load-dependent activation changes in aging remain poorly understood. The aim of this study was to investigate these mechanisms in terms of effective connectivity by application of dynamic causal modeling with Bayesian Model Selection. Eighteen healthy younger (age: 20-32 years) and 32 older (60-75 years) participants performed an n-back task with 3 WM load levels during functional magnetic resonance imaging (fMRI). Behavioral and conventional fMRI results replicated age group by WM load interactions. Importantly, the analysis of effective connectivity derived from dynamic causal modeling, indicated an age-and performance-related reduction in WM load-dependent modulation of connectivity from dorsolateral prefrontal cortex to inferior parietal lobule. This finding provides evidence for the proposal that age-related WM decline manifests as deficient WM load-dependent modulation of neuronal top-down control and can integrate implications from theoretical models and previous studies of functional changes in the aging brain.}, language = {en} }