@article{WeyrichLenzJescheketal.2016, author = {Weyrich, Alexandra and Lenz, Dorina and Jeschek, Marie and Tzu Hung Chung, and Ruebensam, Kathrin and Goeritz, Frank and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Paternal intergenerational epigenetic response to heat exposure in male Wild guinea pigs}, series = {Molecular ecology}, volume = {25}, journal = {Molecular ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13494}, pages = {1729 -- 1740}, year = {2016}, abstract = {Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons' livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an 'immediate' and 'heritable' epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species.}, language = {en} } @article{BinzerGuillRalletal.2016, author = {Binzer, Amrei and Guill, Christian and Rall, Bj{\"o}rn C. and Brose, Ulrich}, title = {Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure}, series = {Global change biology}, volume = {22}, journal = {Global change biology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13086}, pages = {220 -- 227}, year = {2016}, abstract = {Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors.}, language = {en} }