@article{SoeriyadiOngleyKehretal.2021, author = {Soeriyadi, Angela H. and Ongley, Sarah E. and Kehr, Jan-Christoph and Pickford, Russel and Dittmann, Elke and Neilan, Brett A.}, title = {Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase}, series = {ChemBioChem}, volume = {23}, journal = {ChemBioChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4227}, doi = {10.1002/cbic.202100574}, pages = {6}, year = {2021}, abstract = {Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.}, language = {en} } @article{SchmidtKunz2013, author = {Schmidt, Bernd and Kunz, Oliver}, title = {Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C-2-symmetric building block: a strategy for the synthesis of decanolide natural products}, series = {Beilstein journal of organic chemistry}, volume = {9}, journal = {Beilstein journal of organic chemistry}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {1860-5397}, doi = {10.3762/bjoc.9.289}, pages = {2544 -- 2555}, year = {2013}, abstract = {Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru-lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.}, language = {en} } @article{ReynaGonzalezSchmidPetrasetal.2016, author = {Reyna-Gonz{\´a}lez, Emmanuel and Schmid, Bianca and Petras, Daniel and S{\"u}ssmuth, Roderich D. and Dittmann, Elke}, title = {Leader Peptide-Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease-Targeted Libraries}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {55}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201604345}, pages = {9398 -- 9401}, year = {2016}, abstract = {Microviridins are a family of ribosomally synthesized and post-translationally modified peptides with a highly unusual architecture featuring non-canonical lactone as well as lactam rings. Individual variants specifically inhibit different types of serine proteases. Here we have established an efficient in vitro reconstitution approach based on two ATP-grasp ligases that were constitutively activated using covalently attached leader peptides and a GNAT-type N-acetyltransferase. The method facilitates the efficient in vitro one-pot transformation of microviridin core peptides to mature microviridins. The engineering potential of the chemo-enzymatic technology was demonstrated for two synthetic peptide libraries that were used to screen and optimize microviridin variants targeting the serine proteases trypsin and subtilisin. Successive analysis of intermediates revealed distinct structure-activity relationships for respective target proteases.}, language = {en} } @phdthesis{ReynaGonzalez2017, author = {Reyna Gonz{\´a}lez, Emmanuel}, title = {Engineering of the microviridin post-translational modification enzymes for the production of synthetic protease inhibitors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406979}, school = {Universit{\"a}t Potsdam}, pages = {XI, 91, CI}, year = {2017}, abstract = {Natural products and their derivatives have always been a source of drug leads. In particular, bacterial compounds have played an important role in drug development, for example in the field of antibiotics. A decrease in the discovery of novel leads from natural sources and the hope of finding new leads through the generation of large libraries of drug-like compounds by combinatorial chemistry aimed at specific molecular targets drove the pharmaceutical companies away from research on natural products. However, recent technological advances in genetics, bioinformatics and analytical chemistry have revived the interest in natural products. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of natural products generated by the action of post-translationally modifying enzymes on precursor peptides translated from mRNA by ribosomes. The great substrate promiscuity exhibited by many of the enzymes from RiPP biosynthetic pathways have led to the generation of hundreds of novel synthetic and semisynthetic variants, including variants carrying non-canonical amino acids (ncAAs). The microviridins are a family of RiPPs characterized by their atypical tricyclic structure composed of lactone and lactam rings, and their activity as serine protease inhibitors. The generalities of their biosynthetic pathway have already been described, however, the lack of information on details such as the protease responsible for cleaving off the leader peptide from the cyclic core peptide has impeded the fast and cheap production of novel microviridin variants. In the present work, knowledge on leader peptide activation of enzymes from other RiPP families has been extrapolated to the microviridin family, making it possible to bypass the need of a leader peptide. This feature allowed for the exploitation of the microviridin biosynthetic machinery for the production of novel variants through the establishment of an efficient one-pot in vitro platform. The relevance of this chemoenzymatic approach has been exemplified by the synthesis of novel potent serine protease inhibitors from both rationally-designed peptide libraries and bioinformatically predicted microviridins. Additionally, new structure-activity relationships (SARs) could be inferred by screening microviridin intermediates. The significance of this technique was further demonstrated by the simple incorporation of ncAAs into the microviridin scaffold.}, language = {en} } @phdthesis{Krumbholz2021, author = {Krumbholz, Julia}, title = {Identification of chemical mediators that regulate the specialized metabolism in Nostoc punctiforme}, doi = {10.25932/publishup-54024}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-540240}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 187}, year = {2021}, abstract = {Specialized metabolites, so-called natural products, are produced by a variety of different organisms, including bacteria and fungi. Due to their wide range of different biological activities, including pharmaceutical relevant properties, microbial natural products are an important source for drug development. They are encoded by biosynthetic gene clusters (BGCs), which are a group of locally clustered genes. By screening genomic data for genes encoding typical core biosynthetic enzymes, modern bioinformatical approaches are able to predict a wide range of BGCs. To date, only a small fraction of the predicted BGCs have their associated products identified. The phylum of the cyanobacteria has been shown to be a prolific, but largely untapped source for natural products. Especially multicellular cyanobacterial genera, like Nostoc, harbor a high amount of BGCs in their genomes. A main goal of this study was to develop new concepts for the discovery of natural products in cyanobacteria. Due to its diverse setup of orphan BGCs and its amenability to genetic manipulation, Nostoc punctiforme PCC 73102 (N. punctiforme) appeared to be a promising candidate to be established as a model organism for natural product discovery in cyanobacteria. By utilizing a combination of genome-mining, bioactivity-screening, variations of culture conditions, as well as metabolic engineering, not only two new polyketides were discovered, but also first-time insights into the regulation of the specialized metabolism in N. punctiforme were gained during this study. The cultivation of N. punctiforme to very high densities by utilizing increasing light intensities and CO2 levels, led to an enhanced metabolite production, causing rather complex metabolite extracts. By utilizing a library of CFP reporter mutant strains, each strain reporting for one of the predicted BGCs, it was shown that eight out of 15 BGCs were upregulated under high density (HD) cultivation conditions. Furthermore, it could be demonstrated that the supernatant of an HD culture can increase the expression of four of the influenced BGCs, even under conventional cultivation conditions. This led to the hypothesis that a chemical mediator encoded by one of the affected BGCs is accumulating in the HD supernatant and is able to increase the expression of other BGCs as part of a cell-density dependent regulatory circuit. To identify which of the BGCs could be a main trigger of the presumed regulatory circuit, it was tried to activate four BGCs (pks1, pks2, ripp3, ripp4) selectively by overexpression of putative pathway-specific regulatory genes that were found inside the gene clusters. Transcriptional analysis of the mutants revealed that only the mutant strain targeting the pks1 BGC, called AraC_PKS1, was able to upregulate the expression of its associated BGC. From an RNA sequencing study of the AraC_PKS1 mutant strain, it was discovered that beside pks1, the orphan BGCs ripp3 and ripp4 were also upregulated in the mutant strain. Furthermore, it was observed that secondary metabolite production in the AraC_PKS1 mutant strain is further enhanced under high-light and high-CO2 cultivation conditions. The increased production of the pks1 regulator NvlA also had an impact on other regulatory factors, including sigma factors and the RNA chaperone Hfq. Analysis of the AraC_PKS1 cell and supernatant extracts led to the discovery of two novel polyketides, nostoclide and nostovalerolactone, both encoded by the pks1 BGC. Addition of the polyketides to N. punctiforme WT demonstrated that the pks1-derived compounds are able to partly reproduce the effects on secondary metabolite production found in the AraC_PKS1 mutant strain. This indicates that both compounds are acting as extracellular signaling factors as part of a regulatory network. Since not all transcriptional effects that were found in the AraC_PKS1 mutant strain could be reproduced by the pks1 products, it can be assumed that the regulator NvlA has a global effect and is not exclusively specific to the pks1 pathway. This study was the first to use a putative pathway specific regulator for the specific activation of BGC expression in cyanobacteria. This strategy did not only lead to the detection of two novel polyketides, it also gave first-time insights into the regulatory mechanism of the specialized metabolism in N. punctiforme. This study illustrates that understanding regulatory pathways can aid in the discovery of novel natural products. The findings of this study can guide the design of new screening strategies for bioactive compounds in cyanobacteria and help to develop high-titer production platforms for cyanobacterial natural products.}, language = {en} } @misc{KehrPicchiDittmannThuenemann2011, author = {Kehr, Jan-Christoph and Picchi, Douglas Gatte and Dittmann-Th{\"u}nemann, Elke}, title = {Natural product biosyntheses in cyanobacteria a treasure trove of unique enzymes}, series = {Beilstein journal of organic chemistry}, volume = {7}, journal = {Beilstein journal of organic chemistry}, number = {2}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {1860-5397}, doi = {10.3762/bjoc.7.191}, pages = {1622 -- 1635}, year = {2011}, abstract = {Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.}, language = {en} } @misc{BringmannMutanyattaComarMaksimenkaetal.2008, author = {Bringmann, Gerhard and Mutanyatta-Comar, Joan and Maksimenka, Katja and Wanjohi, John M. and Heydenreich, Matthias and Brun, Reto and M{\"u}ller, Werner E. G. and Peter, Martin and Midiwo, Jacob O. and Yenesew, Abiy}, title = {Joziknipholones A and B : the First Dimeric Phenylanthraquinones, from the Roots of Bulbine frutescens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42638}, year = {2008}, abstract = {From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P-configuration (i.e., with the acetyl portions below the anthraquinone plane) at both axes in the case of joziknipholone A, whereas in joziknipholone B, the knipholone part was found to be M-configured. Joziknipholones A and B are active against the chloroquine resistant strain K1 of the malaria pathogen, Plasmodium falciparum, and show moderate activity against murine leukemic lymphoma L5178y cells.}, language = {en} } @article{BaunachChowdhuryStallforthetal.2021, author = {Baunach, Martin and Chowdhury, Somak and Stallforth, Pierre and Dittmann-Th{\"u}nemann, Elke}, title = {The landscape of recombination events that create nonribosomal peptide diversity}, series = {Molecular biology and evolution : MBE}, volume = {38}, journal = {Molecular biology and evolution : MBE}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msab015}, pages = {2116 -- 2130}, year = {2021}, abstract = {Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing andmatching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the A(core) domains, yet domain interfaces and the flexible A(sub) domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.}, language = {en} }