@misc{TianReichetzederLietal.2019, author = {Tian, Mei and Reichetzeder, Christoph and Li, Jian and Hocher, Berthold}, title = {Low birth weight, a risk factor for diseases in later life, is a surrogate of insulin resistance at birth}, series = {Journal of hypertension}, volume = {37}, journal = {Journal of hypertension}, number = {11}, publisher = {Kluwer}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000002156}, pages = {2123 -- 2134}, year = {2019}, abstract = {Low birth weight (LBW) is associated with diseases in adulthood. The birthweight attributed risk is independent of confounding such as gestational age, sex of the newborn but also social factors. The birthweight attributed risk for diseases in later life holds for the whole spectrum of birthweight. This raises the question what pathophysiological principle is actually behind the association. In this review, we provide evidence that LBW is a surrogate of insulin resistance. Insulin resistance has been identified as a key factor leading to type 2 diabetes, cardiovascular disease as well as kidney diseases. We first provide evidence linking LBW to insulin resistance during intrauterine life. This might be caused by both genetic (genetic variations of genes controlling glucose homeostasis) and/or environmental factors (due to alterations of macronutrition and micronutrition of the mother during pregnancy, but also effects of paternal nutrition prior to conception) leading via epigenetic modifications to early life insulin resistance and alterations of intrauterine growth, as insulin is a growth factor in early life. LBW is rather a surrogate of insulin resistance in early life - either due to inborn genetic or environmental reasons - rather than a player on its own.}, language = {en} } @misc{BeaumontWarringtonCavadinoetal.2017, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-M{\o}ller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, {\O}yvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Nj{\o}lstad, Pa ̊l R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Ja ̈rvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F.A. and S{\o}rensen, Thorkild I.A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hyppo ̈nen, Elina and Lowe, William L. , Jr and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {628}, issn = {1866-8372}, doi = {10.25932/publishup-42310}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423100}, pages = {15}, year = {2017}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 {\^A} 10 {\`A}8 . In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} }