@article{KleinDarvinMeinkeetal.2013, author = {Klein, Julia and Darvin, Maxim E. and Meinke, Martina C. and Schweigert, Florian J. and M{\"u}ller, Kerstin E. and Lademann, J{\"u}rgen}, title = {Analyses of the correlation between dermal and blood carotenoids in female cattle by optical methods}, series = {Journal of biomedical optics}, volume = {18}, journal = {Journal of biomedical optics}, number = {6}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.18.6.061219}, pages = {6}, year = {2013}, abstract = {Herd health programs for the maintenance of welfare and productivity in cattle need efficient tools for monitoring the health of individual animals. Recent reports demonstrate that the oxidative status is related to various stress conditions in dairy cows. Biomarkers, among other carotenoids, could serve as indicators of stress originating from the environment (e.g., heat stress or sun radiation) or from the animal itself (e.g., disease). To date, only invasive in vitro tests are available to assess the oxidative status in cattle. The present study compares the results of optical noninvasive in vivo measurements of dermal carotenoids in cattle udder skin using an LED-based miniaturized spectroscopic system (MSS) with those obtained by photometric analysis of beta carotene in whole blood samples using a portable device. Correlations between the concentrations of dermal and blood carotenoids were calculated under consideration of the nutritional status of the animals. Significant correlation (R = 0.86) was found for cattle with a moderate to obese body condition. Thus, the blood and skin concentrations of the marker substance beta carotene are comparable under stable stress conditions of the cattle. This demonstrates that the MSS is suitable for noninvasive assessment of dermal carotenoid concentrations in cattle.}, language = {en} } @article{DemetriouPashalidisNicolaidesetal.2013, author = {Demetriou, Antri and Pashalidis, Ioannis and Nicolaides, Athanassios V. and Kumke, Michael Uwe}, title = {Surface mechanism of the boron adsorption on alumina in aqueous solutions}, series = {Desalination and water treatment : science and engineering}, volume = {51}, journal = {Desalination and water treatment : science and engineering}, number = {31-33}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1944-3994}, doi = {10.1080/19443994.2013.764354}, pages = {6130 -- 6136}, year = {2013}, abstract = {The adsorption of boron (boric acid) from aqueous solutions on alumina has been investigated at pH 8.0, I=0.1M NaClO4, T=22 +/- 3 degrees C, and under normal atmospheric conditions. The characterization of the adsorbed species was performed by Raman spectroscopy and the spectroscopic speciation was assisted by theoretical DFT calculations. Evaluation of the spectroscopic data points to the formation of inner-sphere surface complexes and indicates the formation of two different types of adsorbed boron species. The theoretical calculations corroborate the spectroscopic data and indicate that at low boron concentration the monodentate surface species dominates, whereas increased boron concentration favors the formation of a bidentate surface species. Assuming low coverage, the conditional formation constant for the monodentate surface species has been evaluated to be log=4.1 +/- 0.1.}, language = {en} }