@article{BenbowBirdBrilletal.2019, author = {Benbow, W. and Bird, R. and Brill, A. and Brose, Robert and Chromey, A. J. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Giuri, C. and Gueta, O. and Hanna, D. and Halpern, J. P. and Hassan, Tarek and Holder, J. and Hughes, G. and Humensky, T. B. and Joyce, Amy M. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Matthews, N. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Nievas-Rosillos, M. and Ong, R. A. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, John and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J.}, title = {Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes}, series = {Nature astronomy}, volume = {3}, journal = {Nature astronomy}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-019-0741-z}, pages = {511 -- 516}, year = {2019}, abstract = {The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V and Cui, Wei and Danie, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huttens, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynold, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Brisken, W. F. and Pontrelli, P.}, title = {HESS J1943+213}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aacbd0}, pages = {15}, year = {2018}, abstract = {HESS J1943+213 is a very high energy (VHE; > 100 GeV) gamma-ray source in the direction of the Galactic plane. Studies exploring the classification of the source are converging toward its identification as an extreme synchrotron BL Lac object. Here we present 38 hr of VERITAS observations of HESS J1943+213 taken over 2 yr. The source is detected with a significance of similar to 20 standard deviations, showing a remarkably stable flux and spectrum in VHE gamma-rays. Multifrequency Very Long Baseline Array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with the European VLBI Network and detect this component in the 4.6 and 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, Fermi-LAT, Swift-XRT, the FLWO 48 ' telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron self-Compton model. The well-measured gamma-ray peak of the SED with VERITAS and Fermi-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary gamma-rays from ultra-high-energy cosmic-ray-initiated electromagnetic cascades to the gamma-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and gamma-ray bands. No statistically significant flux or spectral variability is detected.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} } @article{ArcherBenbowBirdetal.2016, author = {Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Huetten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Yusef-Zadeh, F.}, title = {TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/129}, pages = {162 -- 167}, year = {2016}, abstract = {The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S.. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and. (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kelley-Hoskins, N. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Wissel, S. A. and Zitzer, B.}, title = {Measurement of the iron spectrum in cosmic rays by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {2}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.022009}, pages = {15}, year = {2018}, abstract = {We present a new measurement of the energy spectrum of iron nuclei in cosmic rays from 20 TeV to 500 TeV; The measurement makes use of a template-based analysis method, which, for the first time, is applied to the energy reconstruction of iron-induced air showers recorded by the VERITAS array of imaging atmospheric Cherenkov telescopes. The event selection makes use of the direct Cherenkov light which is emitted by charged particles before the first interaction, as well as other parameters related to the shape of the recorded air shower images. The measured spectrum is well described by a power law dF/dE = f(0) center dot (E/E-0)(-gamma) over the full energy range, with gamma = 2.82 +/- 0.30(stat)(-0.27)(+0.24)(syst) and f(0) = (4.82 +/- 0.98(stat)(-2.70)(+2.12)(syst)) x 10(-7) m(-2) s(-1) TeV-1 sr(-1) at E-0 = 50 TeV, with no indication of a cutoff or spectral break. The measured differential flux is compatible with previous results, with improved statistical uncertainty at the highest energies.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Petrashyk, A. and Pohl, M. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Staszak, D. and Sushch, I. and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {Measurement of cosmic-ray electrons at TeV energies by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.062004}, pages = {7}, year = {2018}, abstract = {Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Bourbeau, E. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Huetten, M. and Hanna, D. and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, Nahee and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Slane, P. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray Observations of Tycho's Supernova Remnant with VERITAS and Fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/1/23}, pages = {8}, year = {2017}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brantseg, T. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Geringer-Sameth, A. and Griffin, S. and Grube, J. and H{\"u}tten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Hummensky, B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Koushiappas, S. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {95}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {8}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.95.082001}, pages = {14}, year = {2017}, abstract = {We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of similar to 230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is 1.35 x 10(-23) cm(3) s(-1) at 1 TeV for the bottom quark (b (b) over bar) final state, 2.85 x 10(-24) cm(3) s(-1) at 1 TeV for the tau lepton (tau+tau(-)) final state and 1.32 x 10-25 cm(3) s(-1) at 1 TeV for the gauge boson (gamma gamma) final state.}, language = {en} } @article{ArchambaultArcherBenbowetal.2016, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B. and Fumagalli, M. and Prochaska, J. X.}, title = {UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES}, series = {The astronomical journal}, volume = {151}, journal = {The astronomical journal}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-6256}, doi = {10.3847/0004-6256/151/6/142}, pages = {19}, year = {2016}, abstract = {Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) gamma-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of similar to 570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4s excess.}, language = {en} } @article{ArchambaultArcherAuneetal.2016, author = {Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {EXCEPTIONALLY BRIGHT TEV FLARES FROM THE BINARY LS I+61 degrees 303}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {817}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/817/1/L7}, pages = {6}, year = {2016}, abstract = {The TeV binary system LS I +61 degrees 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5\% and 15\% of the steady flux from the Crab Nebula (> 300 GeV). In this article, VERITAS observations of LS I + 61 degrees. 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30\% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I + 61 degrees 303 during the flares, provides constraints on the properties of the accelerator in the source.}, language = {en} } @article{AllenArchambaultArcheretal.2017, author = {Allen, C. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Eisch, J. D. and Falcone, Abe and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilhelm, Alina and Williams, D. A.}, title = {Very-High-Energy gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1756}, pages = {2117 -- 2123}, year = {2017}, abstract = {We present very-high-energy gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above the background of 20.8 sigma in 47.2 h (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations, the temporal properties of 1ES 2344+514 are studied on short and long times-scales. We fit a constant-flux model to nightly and seasonally binned light curves and apply a fractional variability test to determine the stability of the source on different time-scales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly binned light curves and for the long-term seasonally binned light curve at the > 3 sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (x(2)/NDF = 7.89/6) by a power-law function with an index Gamma = 2.46 +/- 0.06(stat) +/- 0.20(sys) and extends to at least 8 TeV. The extragalactic-backgroundlight-deabsorbed spectrum is adequately fit (x(2)/NDF = 6.73/6) by a power-law function with an index Gamma = 2.15 +/- 0.06(stat) +/- 0.20(sys) while an F-test indicates that the power law with an exponential cut-off function provides a marginally better fit (x(2)/NDF = 2.56/5) at the 2.1 sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.}, language = {en} } @article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Loo, A. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Petrashyk, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Chernyakova, M. and Roberts, M. S. E.}, title = {A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {831}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/831/2/193}, pages = {7}, year = {2016}, abstract = {The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than similar to 2 G before the disappearance of the radio pulsar and greater than similar to 10 G afterward.}, language = {en} } @article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Arlen, T. and Aune, T. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and B{\"o}ttcher, Markus and Bouvier, A. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Cesarini, A. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and H{\"u}tten, M. and Hakansson, Nils and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krause, M. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rousselle, J. and Rovero, A. C. and Saxon, D. B. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Todd, N. W. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Baring, M. G. and Gonzalez, J. Becerra and Cillis, A. N. and Horan, D. and Paneque, D.}, title = {Very high energy outburst of Markarian 501 in May 2009}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {594}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {Veritas Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628744}, pages = {12}, year = {2016}, abstract = {The very high energy (VHE; E > 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54 938-54 956), 2009, as part of an extensive multiwavelength campaign from radio to VHE. Strong VHE yray activity was detected on May 1st with Whipple and VERITAS, when the flux (E > 400 GeV) increased to 10 times the preflare baseline flux (3.9 x 10(-11) ph cm(-2) s(-1)), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15. This VHE flare showed a fast flux variation with an increase of a factor similar to 4 in 25 min, and a falling time of similar to 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2018, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Arcaro, C. and Babic, A. and Banerjee, B. and Bangale, P. and Barres de Almeida, U. and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Bhattacharyya, W. and Blanch, O. and Bonnoli, G. and Carosi, R. and Carosi, A. and Chatterjee, A. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Cumani, P. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, Jose Miguel Martins and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Doro, M. and Glawion, D. Eisenacher and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giammaria, P. and Godinovic, N. and Gora, D. and Guberman, D. and Hadasch, D. and Hahn, A. and Hassan, T. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Ishio, K. and Konno, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Maggio, C. and Majumdar, P. and Makariev, M. and Maneva, G. and Manganaro, M. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Moreno, V. and Moretti, E. and Nagayoshi, T. and Neustroev, V. and Niedzwiecki, A. and Nievas Rosillo, M. and Nigro, C. and Nilsson, K. and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Paiano, S. and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Reichardt, I. and Ribo, M. and Rico, J. and Righi, C. and Rugliancich, A. and Saito, T. and Satalecka, K. and Schroeder, S. and Schweizer, T. and Shore, S. N. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Strzys, M. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Treves, A. and Tsujimoto, S. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Ward, J. E. and Will, M. and Zaric, D. and Arbet-Engels, A. and Baack, D. and Balbo, M. and Biland, A. and Blank, M. and Bretz, T. and Bruegge, K. and Bulinski, M. and Buss, J. and Dmytriiev, A. and Dorner, D. and Einecke, S. and Elsaesser, D. and Herbst, T. and Hildebrand, D. and Kortmann, L. and Linhoff, L. and Mahlke, M. and Mannheim, K. and Mueller, S. A. and Neise, D. and Neronov, A. and Noethe, M. and Oberkirch, J. and Paravac, A. and Rhode, W. and Schleicher, B. and Schulz, F. and Sedlaczek, K. and Shukla, A. and Sliusar, V. and Walter, R. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buckley, J. H. and Bugaev, V. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Gillanders, G. H. and Gueta, O. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Huetten, M. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhel, A. and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Perri, M. and Verrecchia, F. and Leto, C. and Villata, M. and Raiteri, C. M. and Jorstad, S. G. and Larionov, V. M. and Blinov, D. A. and Grishina, T. S. and Kopatskaya, E. N. and Larionova, E. G. and Nikiforova, A. A. and Morozova, D. A. and Troitskaya, Yu. V. and Troitsky, I. S. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kurtanidze, S. O. and Kimeridze, G. N. and Chigladze, R. A. and Strigachev, A. and Sadun, A. C.}, title = {Extreme HBL behavior of Markarian 501 during 2012}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {620}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration FACT Collaboration VERITAS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833704}, pages = {23}, year = {2018}, abstract = {Aims. We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations, and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods. We organized a multiwavelength campaign to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of similar to 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was similar to 3 CU, and the peak of the high-energy spectral component was found to be at similar to 2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices <2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra measured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance <3 sigma) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behavior seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.}, language = {en} } @article{AhnenAnsoldiAntonellietal.2017, author = {Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Bernardini, E. and Berti, A. and Biasuzzi, B. and Biland, A. and Blanch, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Buson, S. and Carosi, A. and Chatterjee, A. and Clavero, R. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Wilhelmi, E. de Ona and Di Pierro, F. and Doert, M. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Glawion, D. Eisenacher and Elsaesser, D. and Engelkemeier, M. and Ramazani, V. Fallah and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Lopez, R. J. Garcia and Garczarczyk, M. and Terrats, D. Garrido and Gaug, M. and Giammaria, P. and Godinovic, N. and Gonzalez Munoz, A. and Gora, D. and Guberman, D. and Hadasch, D. and Hahn, A. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kodani, K. and Konno, Y. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Coto, R. and Majumdar, P. and Makariev, M. and Mallot, K. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Moretti, E. and Nakajima, D. and Neustroev, V. and Niedzwiecki, A. and Rosillo, M. Nievas and Nilsson, K. and Nishijima, K. and Noda, K. and Nogues, L. and Overkemping, A. and Paiano, S. and Palacio, J. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Pedaletti, G. and Peresano, M. and Perri, L. and Persic, M. and Poutanen, J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reichardt, I. and Rhode, W. and Ribo, M. and Rico, J. and Rodriguez Garcia, J. and Saito, T. and Satalecka, K. and Schroder, S. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Steinbring, T. and Strzys, M. and Suric, T. and Takalo, L. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Torres, D. F. and Toyama, T. and Treves, A. and Vanzo, G. and Verguilov, V. and Vovk, I. and Ward, J. E. and Will, M. and Wu, M. H. and Zanin, R. and Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, N. and Park, N. and Perkins, J. and Pichel, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Razzaque, S. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Larionov, V. M. and Arkharov, A. A. and Blinov, D. A. and Efimova, N. V. and Grishina, T. S. and Hagen-Thorn, V. A. and Kopatskaya, E. N. and Larionova, L. V. and Larionova, E. G. and Morozova, D. A. and Troitsky, I. S. and Ligustri, R. and Calcidese, P. and Berdyugin, A. and Kurtanidze, O. M. and Nikolashvili, M. G. and Kimeridze, G. N. and Sigua, L. A. and Kurtanidze, S. O. and Chigladze, R. A. and Chen, W. P. and Koptelova, E. and Sakamoto, T. and Sadun, A. C. and Moody, J. W. and Pace, C. and Pearson, R. and Yatsu, Y. and Mori, Y. and Carraminyana, A. and Carrasco, L. and de la Fuente, E. and Norris, J. P. and Smith, P. S. and Wehrle, A. and Gurwell, M. A. and Zook, A. and Pagani, C. and Perri, M. and Capalbi, M. and Cesarini, A. and Krimm, H. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Ros, E. and Pushkarev, A. B. and Lister, M. L. and Sokolovsky, K. V. and Kadler, M. and Piner, G. and Lahteenmaki, A. and Tornikoski, M. and Angelakis, E. and Krichbaum, T. P. and Nestoras, I. and Fuhrmann, L. and Zensus, J. A. and Cassaro, P. and Orlati, A. and Maccaferri, G. and Leto, P. and Giroletti, M. and Richards, J. L. and Max-Moerbeck, W. and Readhead, A. C. S.}, title = {Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {603}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {MAGIC Collaboration;VERITAS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629540}, pages = {30}, year = {2017}, abstract = {Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios. Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature. Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays). Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Errando, Manel and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Park, N. and Perkins, Jeremy S. and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B. and Vurm, Indrek and Beloborodov, Andrei}, title = {A Strong Limit on the Very-high-energy Emission from GRB 150323A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {857}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab371}, pages = {6}, year = {2018}, abstract = {On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1\% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only similar to 2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to similar to 50\% at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below similar to 100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A greater than or similar to 3 x 10(11) g . cm(-1), consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Christiansen, Jessie L. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gueta, O. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Kaur, A.}, title = {VERITAS Observations of the BL Lac Object TXS 0506+056}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aad053}, pages = {6}, year = {2018}, abstract = {On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event IC 170922A, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar TXS 0506+056. (3FGL J0509.4+ 0541), which was in an elevated gamma-ray emission state as measured by the Fermi satellite. Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E > 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+ 056 was detected by VERITAS with a significance of 5.8 standard deviations (sigma) in the full 35 hr data set. The average photon flux of the source during this period was (8.9 +/- 1.6). x. 10(-12) cm(-2) s(-1), or 1.6\% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of 4.8. +/-. 1.3.}, language = {en} } @article{AbeysekaraArcherAuneetal.2018, author = {Abeysekara, A. U. and Archer, A. and Aune, Taylor and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, Amy and Gotthelf, Eric V. and Grube, J. and Hanna, David and Hervet, O. and Holder, J. and Huang, K. and Hughes, G. and Humensky, T. B. and Huetten, M. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, Dirk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rousselle, J. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B.}, title = {A Very High Energy gamma-Ray Survey toward the Cygnus Region of the Galaxy}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac4a2}, pages = {33}, year = {2018}, abstract = {We present results from deep observations toward the Cygnus region using 300 hr of very high energy (VHE)gamma-ray data taken with the VERITAS Cerenkov telescope array and over 7 yr of high-energy.-ray data taken with the Fermi satellite at an energy above 1 GeV. As the brightest region of diffuse gamma-ray emission in the northern sky, the Cygnus region provides a promising area to probe the origins of cosmic rays. We report the identification of a potential Fermi-LAT counterpart to VER J2031+415 (TeV J2032+4130) and resolve the extended VHE source VER J2019+368 into two source candidates (VER J2018+367* and VER J2020+368*) and characterize their energy spectra. The Fermi-LAT morphology of 3FGL J2021.0+4031e (the Gamma Cygni supernova remnant) was examined, and a region of enhanced emission coincident with VER J2019+407 was identified and jointly fit with the VERITAS data. By modeling 3FGL J2015.6+3709 as two sources, one located at the location of the pulsar wind nebula CTB 87 and one at the quasar QSO J2015+371, a continuous spectrum from 1 GeV to 10 TeV was extracted for VER J2016+371 (CTB 87). An additional 71 locations coincident with Fermi-LAT sources and other potential objects of interest were tested for VHE gamma-ray emission, with no emission detected and upper limits on the differential flux placed at an average of 2.3\% of the Crab Nebula flux. We interpret these observations in a multiwavelength context and present the most detailed gamma-ray view of the region to date.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of Very-high-energy Emission from RGB J2243+203 and Derivation of Its Redshift Upper Limit}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aa8d76}, pages = {1188 -- 1204}, year = {2017}, abstract = {Very-high-energy (VHE; > 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 2014 December 21 and 24. The VERITAS energy spectrum from this source can be fitted by a power law with a photon index of 4.6 +/- 0.5, and a flux normalization at 0.15 TeV of (6.3 +/- 1.1) x 10(-10) cm(-2) s(-1) TeV-1. The integrated Fermi-LAT flux from 1 to 100 GeV during the VERITAS detection is (4.1 +/- 0.8) x 10(-8) cm(-2) s(-1), which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0 +/- 0.1 x 10(-9) cm(-2) s(-1)). The detection with VERITAS triggered observations in the X-ray band with the Swift-XRT. However, due to scheduling constraints Swift-XRT observations were performed 67 hr after the VERITAS detection, rather than simultaneously with the VERITAS observations. The observed X-ray energy spectrum between 2 and 10 keV can be fitted with a power law with a spectral index of 2.7 +/- 0.2, and the integrated photon flux in the same energy band is (3.6 +/- 0.6) x 10(-13) cm(-2) s(-1). EBL-model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9 to z < 1.1.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Petrashyk, A. and Petry, D. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Reynolds, K. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {VERITAS and multiwavelength observations of the BL Lacertae object 1ES 1741+196}, series = {Monthly notices of the Royal Astronomical Society}, volume = {459}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw664}, pages = {2550 -- 2557}, year = {2016}, abstract = {We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.}, language = {en} }