@article{ShenarOskinovaHamannetal.2015, author = {Shenar, Tomer and Oskinova, Lida and Hamann, Wolf-Rainer and Corcoran, Michael F. and Moffat, Anthony F. J. and Pablo, Herbert and Richardson, Noel D. and Waldron, Wayne L. and Huenemoerder, David P. and Maiz Apellaniz, Jesus and Nichols, Joy S. and Todt, Helge Tobias and Naze, Yael and Hoffman, Jennifer L. and Pollock, Andy M. T. and Negueruela, Ignacio}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. IV. A multiwavelength, non-lte spectroscopic analysis}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/135}, pages = {20}, year = {2015}, abstract = {Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system delta Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if delta Ori lies at about twice the Hipparcos distance, in the vicinity of the sigma-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be Delta V approximate to 2.(m)8. The inferred parameters suggest that the secondary is an early B-type dwarf (approximate to B1 V), while the tertiary is an early B-type subgiant (approximate to B0 IV). We find evidence for rapid turbulent velocities (similar to 200 km s(-1)) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind (logL(X)/L-Bol approximate to -6.85), initiating close to the stellar surface at R-0 similar to 1.1 R-*. Accounting for clumping, the mass-loss rate of the primary is found to be log (M) over dot approximate to -6.4 (M-circle dot yr(-1))., which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains.}, language = {en} } @article{SchaffenrothBarlowGeieretal.2019, author = {Schaffenroth, Veronika and Barlow, Brad N. and Geier, Stephan Alfred and Vuckovic, Maja and Kilkenny, D. and Wolz, M. and Kupfer, Thomas and Heber, Ulrich and Drechsel, H. and Kimeswenger, S. and Marsh, T. and Wolf, M. and Pelisoli, Ingrid Domingos and Freudenthal, Joseph and Dreizler, S. and Kreuzer, S. and Ziegerer, E.}, title = {The EREBOS project: Investigating the effect of substellar and low-mass stellar companions on late stellar evolution Survey, target selection, and atmospheric parameters}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936019}, pages = {29}, year = {2019}, abstract = {Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations - reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10\% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.}, language = {en} } @article{PabloRichardsonMoffatetal.2015, author = {Pablo, Herbert and Richardson, Noel D. and Moffat, Anthony F. J. and Corcoran, Michael and Shenar, Tomer and Benvenuto, Omar and Fuller, Jim and Naze, Yael and Hoffman, Jennifer L. and Miroshnichenko, Anatoly and Apellaniz, Jesus Maiz and Evans, Nancy and Eversberg, Thomas and Gayley, Ken and Gull, Ted and Hamaguchi, Kenji and Hamann, Wolf-Rainer and Henrichs, Huib and Hole, Tabetha and Ignace, Richard and Iping, Rosina and Lauer, Jennifer and Leutenegger, Maurice and Lomax, Jamie and Nichols, Joy and Oskinova, Lida and Owocki, Stan and Pollock, Andy and Russell, Christopher M. P. and Waldron, Wayne and Buil, Christian and Garrel, Thierry and Graham, Keith and Heathcote, Bernard and Lemoult, Thierry and Li, Dong and Mauclaire, Benjamin and Potter, Mike and Ribeiro, Jose and Matthews, Jaymie and Cameron, Chris and Guenther, David and Kuschnig, Rainer and Rowe, Jason and Rucinski, Slavek and Sasselov, Dimitar and Weiss, Werner}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/134}, pages = {11}, year = {2015}, abstract = {We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.}, language = {en} } @article{NicholsHuenemoerderCorcoranetal.2015, author = {Nichols, Joy and Huenemoerder, David P. and Corcoran, Michael F. and Waldron, Wayne and Naze, Yael and Pollock, Andy M. T. and Moffat, Anthony F. J. and Lauer, Jennifer and Shenar, Tomer and Russell, Christopher M. P. and Richardson, Noel D. and Pablo, Herbert and Evans, Nancy Remage and Hamaguchi, Kenji and Gull, Theodore and Hamann, Wolf-Rainer and Oskinova, Lida and Ignace, Rosina and Hoffman, Jennifer L. and Hole, Karen Tabetha and Lomax, Jamie R.}, title = {A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, delta ORIONIS Aa. II. X-RAY VARIABILITY}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/133}, pages = {21}, year = {2015}, abstract = {We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximate to 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 is is confirmed, with a maximum amplitude of about +/- 15\% within a single approximate to 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.}, language = {en} } @article{DevarapalliJagirdarPrasadetal.2020, author = {Devarapalli, Shanti Priya and Jagirdar, Rukmini and Prasad, Manjunath R. and Thomas, Vineet S. and Ahmed, Syed Aslam and Gralapally, Raghavendra and Das, Jesmin Permala Lohy}, title = {Comprehensive study of a neglected contact binary TYC 5532-1333-1}, series = {Monthly notices of the Royal Astronomical Society}, volume = {493}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa031}, pages = {1565 -- 1573}, year = {2020}, abstract = {A comprehensive photometric and spectroscopic analysis of the variable TYC 5532-1333-1 (TYC) along with an investigation of its orbital period variation is presented for the first time. The B- and V-band photometric study indicates that TYC is an intermediate contact binary with degree of contact and mass ratio of 34 per cent and similar to 0.24, respectively. The derived equivalent widths from the spectroscopic study of H alpha and Na-I lines reveal phase-dependent variation and mutual correlation. Using the available times of minimum light, an investigation of orbital period variation shows a long-term decrease at a rate of 3.98 x 10(-6) d yr(-1). Expected causes for such decline in the orbital period could be angular momentum loss and a quasi-sinusoidal variation due to light-time effect probably caused by a third-body companion. The minimum mass of the third body (M-3) was derived to be 0.65 M-circle dot. Our presented study is an attempt to evaluate and understand the evolutionary state of above-mentioned neglected contact binary.}, language = {en} } @article{CorcoranNicholsPabloetal.2015, author = {Corcoran, Michael F. and Nichols, Joy S. and Pablo, Herbert and Shenar, Tomer and Pollock, Andy M. T. and Waldron, Wayne L. and Moffat, Anthony F. J. and Richardson, Noel D. and Russell, Christopher M. P. and Hamaguchi, Kenji and Huenemoerder, David P. and Oskinova, Lida and Hamann, Wolf-Rainer and Naze, Yael and Ignace, Richard and Evans, Nancy Remage and Lomax, Jamie R. and Hoffman, Jennifer L. and Gayley, Kenneth and Owocki, Stanley P. and Leutenegger, Maurice and Gull, Theodore R. and Hole, Karen Tabetha and Lauer, Jennifer and Iping, Rosina C.}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/132}, pages = {15}, year = {2015}, abstract = {We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.}, language = {en} } @article{BaranOstensenTeltingetal.2018, author = {Baran, Andrzej S. and Ostensen, R. H. and Telting, J. H. and Vos, Joris and Kilkenny, D. and Vuckovic, Maja and Reed, M. D. and Silvotti, R. and Jeffery, C. Simon and Parsons, Steven G. and Dhillon, V. S. and Marsh, T. R.}, title = {Pulsations and eclipse-time analysis of HW Vir}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2473}, pages = {2721 -- 2735}, year = {2018}, abstract = {We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O-C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M-circle dot, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 mu Hz, with the majority of peaks found below 2600 mu Hz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit.}, language = {en} }