@phdthesis{Tranter2022, author = {Tranter, Morgan Alan}, title = {Numerical quantification of barite reservoir scaling and the resulting injectivity loss in geothermal systems}, doi = {10.25932/publishup-56113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561139}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2022}, abstract = {Due to the major role of greenhouse gas emissions in global climate change, the development of non-fossil energy technologies is essential. Deep geothermal energy represents such an alternative, which offers promising properties such as a high base load capability and a large untapped potential. The present work addresses barite precipitation within geothermal systems and the associated reduction in rock permeability, which is a major obstacle to maintaining high efficiency. In this context, hydro-geochemical models are essential to quantify and predict the effects of precipitation on the efficiency of a system. The objective of the present work is to quantify the induced injectivity loss using numerical and analytical reactive transport simulations. For the calculations, the fractured-porous reservoirs of the German geothermal regions North German Basin (NGB) and Upper Rhine Graben (URG) are considered. Similar depth-dependent precipitation potentials could be determined for both investigated regions (2.8-20.2 g/m3 fluid). However, the reservoir simulations indicate that the injectivity loss due to barite deposition in the NGB is significant (1.8\%-6.4\% per year) and the longevity of the system is affected as a result; this is especially true for deeper reservoirs (3000 m). In contrast, simulations of URG sites indicate a minor role of barite (< 0.1\%-1.2\% injectivity loss per year). The key differences between the investigated regions are reservoir thicknesses and the presence of fractures in the rock, as well as the ionic strength of the fluids. The URG generally has fractured-porous reservoirs with much higher thicknesses, resulting in a greater distribution of precipitates in the subsurface. Furthermore, ionic strengths are higher in the NGB, which accelerates barite precipitation, causing it to occur more concentrated around the wellbore. The more concentrated the precipitates occur around the wellbore, the higher the injectivity loss. In this work, a workflow was developed within which numerical and analytical models can be used to estimate and quantify the risk of barite precipitation within the reservoir of geothermal systems. A key element is a newly developed analytical scaling score that provides a reliable estimate of induced injectivity loss. The key advantage of the presented approach compared to fully coupled reservoir simulations is its simplicity, which makes it more accessible to plant operators and decision makers. Thus, in particular, the scaling score can find wide application within geothermal energy, e.g., in the search for potential plant sites and the estimation of long-term efficiency.}, language = {en} } @article{TranterDeLuciaKuehn2021, author = {Tranter, Morgan Alan and De Lucia, Marco and K{\"u}hn, Michael}, title = {Barite scaling potential modelled for fractured-porous geothermal reservoirs}, series = {Minerals}, volume = {11}, journal = {Minerals}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min11111198}, pages = {22}, year = {2021}, abstract = {Barite scalings are a common cause of permanent formation damage to deep geothermal reservoirs. Well injectivity can be impaired because the ooling of saline fluids reduces the solubility of barite, and the continuous re-injection of supersaturated fluids forces barite to precipitate in the host rock. Stimulated reservoirs in the Upper Rhine Graben often have multiple relevant flow paths in the porous matrix and fracture zones, sometimes spanning multiple stratigraphical units to achieve the economically necessary injectivity. While the influence of barite scaling on injectivity has been investigated for purely porous media, the role of fractures within reservoirs consisting of both fractured and porous sections is still not well understood. Here, we present hydro-chemical simulations of a dual-layer geothermal reservoir to study the long-term impact of barite scale formation on well injectivity. Our results show that, compared to purely porous reservoirs, fractured porous reservoirs have a significantly reduced scaling risk by up to 50\%, depending on the flow rate ratio of fractures. Injectivity loss is doubled, however, if the amount of active fractures is increased by one order of magnitude, while the mean fracture aperture is decreased, provided the fractured aquifer dictates the injection rate. We conclude that fractured, and especially hydraulically stimulated, reservoirs are generally less affected by barite scaling and that large, but few, fractures are favourable. We present a scaling score for fractured-porous reservoirs, which is composed of easily derivable quantities such as the radial equilibrium length and precipitation potential. This score is suggested for use approximating the scaling potential and its impact on injectivity of a fractured-porous reservoir for geothermal exploitation.}, language = {en} } @article{TranterDeLuciaWolfgrammetal.2020, author = {Tranter, Morgan Alan and De Lucia, Marco and Wolfgramm, Markus and K{\"u}hn, Michael}, title = {Barite scale formation and injectivity loss models for geothermal systems}, series = {Water}, volume = {12}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12113078}, pages = {24}, year = {2020}, abstract = {Barite scales in geothermal installations are a highly unwanted effect of circulating deep saline fluids. They build up in the reservoir if supersaturated fluids are re-injected, leading to irreversible loss of injectivity. A model is presented for calculating the total expected barite precipitation. To determine the related injectivity decline over time, the spatial precipitation distribution in the subsurface near the injection well is assessed by modelling barite growth kinetics in a radially diverging Darcy flow domain. Flow and reservoir properties as well as fluid chemistry are chosen to represent reservoirs subject to geothermal exploration located in the North German Basin (NGB) and the Upper Rhine Graben (URG) in Germany. Fluids encountered at similar depths are hotter in the URG, while they are more saline in the NGB. The associated scaling amount normalised to flow rate is similar for both regions. The predicted injectivity decline after 10 years, on the other hand, is far greater for the NGB (64\%) compared to the URG (24\%), due to the temperature- and salinity-dependent precipitation rate. The systems in the NGB are at higher risk. Finally, a lightweight score is developed for approximating the injectivity loss using the Damkohler number, flow rate and total barite scaling potential. This formula can be easily applied to geothermal installations without running complex reactive transport simulations.}, language = {en} }