@phdthesis{Verch2023, author = {Verch, Ronald}, title = {Whole-body electrical muscle stimulation superimposed walking as training tool in the management of type 2 diabetes mellitus}, doi = {10.25932/publishup-63424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634240}, school = {Universit{\"a}t Potsdam}, pages = {IX, 78}, year = {2023}, abstract = {Background: The worldwide prevalence of diabetes has been increasing in recent years, with a projected prevalence of 700 million patients by 2045, leading to economic burdens on societies. Type 2 diabetes mellitus (T2DM), representing more than 95\% of all diabetes cases, is a multifactorial metabolic disorder characterized by insulin resistance leading to an imbalance between insulin requirements and supply. Overweight and obesity are the main risk factors for developing type 2 diabetes mellitus. The lifestyle modification of following a healthy diet and physical activity are the primary successful treatment and prevention methods for type 2 diabetes mellitus. Problems may exist with patients not achieving recommended levels of physical activity. Electrical muscle stimulation (EMS) is an increasingly popular training method and has become in the focus of research in recent years. It involves the external application of an electric field to muscles, which can lead to muscle contraction. Positive effects of EMS training have been found in healthy individuals as well as in various patient groups. New EMS devices offer a wide range of mobile applications for whole-body electrical muscle stimulation (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. This dissertation project aims to investigate whether WB-EMS is suitable for intensifying low-intensive dynamic exercises such as walking and Nordic walking. Methods: Two independent studies were conducted. The first study aimed to investigate the reliability of exercise parameters during the 10-meter Incremental Shuttle Walk Test (10MISWT) using superimposed WB-EMS (research question 1, sub-question a) and the difference in exercise intensity compared to conventional walking (CON-W, research question 1, sub-question b). The second study aimed to compare differences in exercise parameters between superimposed WB-EMS (WB-EMS-W) and conventional walking (CON-W), as well as between superimposed WB-EMS (WB-EMS-NW) and conventional Nordic walking (CON-NW) on a treadmill (research question 2). Both studies took place in participant groups of healthy, moderately active men aged 35-70 years. During all measurements, the Easy Motion Skin® WB-EMS low frequency stimulation device with adjustable intensities for eight muscle groups was used. The current intensity was individually adjusted for each participant at each trial to ensure safety, avoiding pain and muscle cramps. In study 1, thirteen individuals were included for each sub question. A randomized cross-over design with three measurement appointments used was to avoid confounding factors such as delayed onset muscle soreness. The 10MISWT was performed until the participants no longer met the criteria of the test and recording five outcome measures: peak oxygen uptake (VO2peak), relative VO2peak (rel.VO2peak), maximum walk distance (MWD), blood lactate concentration, and the rate of perceived exertion (RPE). Eleven participants were included in study 2. A randomized cross-over design in a study with four measurement appointments was used to avoid confounding factors. A treadmill test protocol at constant velocity (6.5 m/s) was developed to compare exercise intensities. Oxygen uptake (VO2), relative VO2 (rel.VO2) blood lactate, and the RPE were used as outcome variables. Test-retest reliability between measurements was determined using a compilation of absolute and relative measures of reliability. Outcome measures in study 2 were studied using multifactorial analyses of variances. Results: Reliability analysis showed good reliability for VO2peak, rel.VO2peak, MWD and RPE with no statistically significant difference for WB-EMS-W during 10WISWT. However, differences compared to conventional walking in outcome variables were not found. The analysis of the treadmill tests showed significant effects for the factors CON/WB-EMS and W/NW for the outcome variables VO2, rel.VO2 and lactate, with both factors leading to higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12\%. The factor combination EMS∗W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values, RPE differences for W/NW and EMS∗W/NW were not significant. Discussion: The present project found good reliability for measuring VO2peak, rel. VO2peak, MWD and RPE during 10MISWT during WB-EMS-W, confirming prior research of the test. The test appears technically limited rather than physiologically in healthy, moderately active men. However, it is unsuitable for investigating differences in exercise intensities using WB-EMS-W compared to CON-W due to different perceptions of current intensity between exercise and rest. A treadmill test with constant walking speed was conducted to adjust individual maximum tolerable current intensity for the second part of the project. The treadmill test showed a significant increase in metabolic demands during WB-EMS-W and WB-EMS-NW by an increased VO2 and blood lactate concentration. However, the clinical relevance of these findings remains debatable. The study also found that WB-EMS superimposed exercises are perceived as more strenuous than conventional exercise. While in parts comparable studies lead to higher results for VO2, our results are in line with those of other studies using the same frequency. Due to the minor clinical relevance the use of WB-EMS as exercise intensification tool during walking and Nordic walking is limited. High device cost should be considered. Habituation to WB-EMS could increase current intensity tolerance and VO2 and make it a meaningful method in the treatment of T2DM. Recent figures show that WB-EMS is used in obese people to achieve health and weight goals. The supposed benefit should be further investigated scientifically.}, language = {en} } @phdthesis{Wittenbecher2017, author = {Wittenbecher, Clemens}, title = {Linking whole-grain bread, coffee, and red meat to the risk of type 2 diabetes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404592}, school = {Universit{\"a}t Potsdam}, pages = {XII, 194, ii}, year = {2017}, abstract = {Background: Consumption of whole-grain, coffee, and red meat were consistently related to the risk of developing type 2 diabetes in prospective cohort studies, but potentially underlying biological mechanisms are not well understood. Metabolomics profiles were shown to be sensitive to these dietary exposures, and at the same time to be informative with respect to the risk of type 2 diabetes. Moreover, graphical network-models were demonstrated to reflect the biological processes underlying high-dimensional metabolomics profiles. Aim: The aim of this study was to infer hypotheses on the biological mechanisms that link consumption of whole-grain bread, coffee, and red meat, respectively, to the risk of developing type 2 diabetes. More specifically, it was aimed to consider network models of amino acid and lipid profiles as potential mediators of these risk-relations. Study population: Analyses were conducted in the prospective EPIC-Potsdam cohort (n = 27,548), applying a nested case-cohort design (n = 2731, including 692 incident diabetes cases). Habitual diet was assessed with validated semiquantitative food-frequency questionnaires. Concentrations of 126 metabolites (acylcarnitines, phosphatidylcholines, sphingomyelins, amino acids) were determined in baseline-serum samples. Incident type 2 diabetes cases were assed and validated in an active follow-up procedure. The median follow-up time was 6.6 years. Analytical design: The methodological approach was conceptually based on counterfactual causal inference theory. Observations on the network-encoded conditional independence structure restricted the space of possible causal explanations of observed metabolomics-data patterns. Given basic directionality assumptions (diet affects metabolism; metabolism affects future diabetes incidence), adjustment for a subset of direct neighbours was sufficient to consistently estimate network-independent direct effects. Further model-specification, however, was limited due to missing directionality information on the links between metabolites. Therefore, a multi-model approach was applied to infer the bounds of possible direct effects. All metabolite-exposure links and metabolite-outcome links, respectively, were classified into one of three categories: direct effect, ambiguous (some models indicated an effect others not), and no-effect. Cross-sectional and longitudinal relations were evaluated in multivariable-adjusted linear regression and Cox proportional hazard regression models, respectively. Models were comprehensively adjusted for age, sex, body mass index, prevalence of hypertension, dietary and lifestyle factors, and medication. Results: Consumption of whole-grain bread was related to lower levels of several lipid metabolites with saturated and monounsaturated fatty acids. Coffee was related to lower aromatic and branched-chain amino acids, and had potential effects on the fatty acid profile within lipid classes. Red meat was linked to lower glycine levels and was related to higher circulating concentrations of branched-chain amino acids. In addition, potential marked effects of red meat consumption on the fatty acid composition within the investigated lipid classes were identified. Moreover, potential beneficial and adverse direct effects of metabolites on type 2 diabetes risk were detected. Aromatic amino acids and lipid metabolites with even-chain saturated (C14-C18) and with specific polyunsaturated fatty acids had adverse effects on type 2 diabetes risk. Glycine, glutamine, and lipid metabolites with monounsaturated fatty acids and with other species of polyunsaturated fatty acids were classified as having direct beneficial effects on type 2 diabetes risk. Potential mediators of the diet-diabetes links were identified by graphically overlaying this information in network models. Mediation analyses revealed that effects on lipid metabolites could potentially explain about one fourth of the whole-grain bread effect on type 2 diabetes risk; and that effects of coffee and red meat consumption on amino acid and lipid profiles could potentially explain about two thirds of the altered type 2 diabetes risk linked to these dietary exposures. Conclusion: An algorithm was developed that is capable to integrate single external variables (continuous exposures, survival time) and high-dimensional metabolomics-data in a joint graphical model. Application to the EPIC-Potsdam cohort study revealed that the observed conditional independence patterns were consistent with the a priori mediation hypothesis: Early effects on lipid and amino acid metabolism had the potential to explain large parts of the link between three of the most widely discussed diabetes-related dietary exposures and the risk of developing type 2 diabetes.}, language = {en} }