@phdthesis{Friese2024, author = {Friese, Sharleen}, title = {Trace elements and genomic instability in the murine brain}, school = {Universit{\"a}t Potsdam}, pages = {XV, 112, XXI}, year = {2024}, abstract = {The trace elements copper, iron, manganese, selenium and zinc are essential micronutrients involved in various cellular processes, all with different responsibilities. Based on that importance, their concentrations are tightly regulated in mammalian organisms. The maintenance of those levels is termed trace element homeostasis and mediated by a combination of processes regulating absorption, cellular and systemic transport mechanisms, storage and effector proteins as well as excretion. Due to their chemical properties, some functions of trace elements overlap, as seen in antioxidative defence, for example, comprising an expansive spectrum of antioxidative proteins and molecules. Simultaneously, the same is true for regulatory mechanisms, causing trace elements to influence each other's homeostases. To mimic physiological conditions, trace elements should therefore not be evaluated separately but considered in parallel. While many of these homeostatic mechanisms are well-studied, for some elements new pathways are still discovered. Additionally, the connections between dietary trace element intake, trace element status and health are not fully unraveled, yet. With current demographic developments, also the influence of ageing as well as of certain pathological conditions is of increasing interest. Here, the TraceAge research unit was initiated, aiming to elucidate the homeostases of and interactions between essential trace elements in healthy and diseased elderly. While human cohort studies can offer insights into trace element profiles, also in vivo model organisms are used to identify underlying molecular mechanisms. This is achieved by a set of feeding studies including mice of various age groups receiving diets of reduced trace element content. To account for cognitive deterioration observed with ageing, neurodegenerative diseases, as well as genetic mutations triggering imbalances in cerebral trace element concentrations, one TraceAge work package focuses on trace elements in the murine brain, specifically the cerebellum. In that context, concentrations of the five essential trace elements of interest, copper, iron, manganese, selenium and zinc, were quantified via inductively coupled plasma-tandem mass spectrometry, revealing differences in priority of trace element homeostases between brain and liver. Upon moderate reduction of dietary trace element supply, cerebellar concentrations of copper and manganese deviated from those in adequately supplied animals. By further reduction of dietary trace element contents, also concentrations of cerebellar iron and selenium were affected, but not as strong as observed in liver tissue. In contrast, zinc concentrations remained stable. Investigation of aged mice revealed cerebellar accumulation of copper and iron, possibly contributing to oxidative stress on account of their redox properties. Oxidative stress affects a multitude of cellular components and processes, among them, next to proteins and lipids, also the DNA. Direct insults impairing its integrity are of relevance here, but also indirect effects, mediated by the machinery ensuring genomic stability and its functionality. The system includes the DNA damage response, comprising detection of endogenous and exogenous DNA lesions, decision on subsequent cell fate and enabling DNA repair, which presents another pillar of genomic stability maintenance. Also in proteins of this machinery, trace elements act as cofactors, shaping the hypothesis of impaired genomic stability maintenance under conditions of disturbed trace element homeostasis. To investigate this hypothesis, a variety of approaches was used, applying OECD guidelines Organisation for Economic Co-operation and Development, adapting existing protocols for use in cerebellum tissue and establishing new methods. In order to assess the impact of age and dietary trace element depletion on selected endpoints estimating genomic instability, DNA damage and DNA repair were investigated. DNA damage analysis, in particular of DNA strand breaks and oxidatively modified DNA bases, revealed stable physiological levels which were neither affected by age nor trace element supply. To examine whether this is a result of increased repair rates, two steps characteristic for base excision repair, namely DNA incision and ligation activity, were studied. DNA glycosylases and DNA ligases were not reduced in their activity by age or trace element depletion, either. Also on the level of gene expression, major proteins involved in genomic stability maintenance were analysed, mirroring results obtained from protein studies. To conclude, the present work describes homeostatic regulation of trace elements in the brain, which, in absence of genetic mutations, is able to retain physiological levels even under conditions of reduced trace element supply to a certain extent. This is reflected by functionality of genomic stability maintenance mechanisms, illuminating the prioritization of the brain as vital organ.}, language = {en} } @article{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222010905}, pages = {16}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @article{NicolaiWittFrieseetal.2022, author = {Nicolai, Merle Marie and Witt, Barbara and Friese, Sharleen and Michaelis, Vivien and H{\"o}lz-Armstrong, Lisa and Martin, Maximilian and Ebert, Franziska and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells}, series = {Food and chemical toxicology}, volume = {161}, journal = {Food and chemical toxicology}, publisher = {Elsevier}, address = {Oxford}, issn = {0278-6915}, doi = {10.1016/j.fct.2022.112822}, pages = {10}, year = {2022}, abstract = {Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes.}, language = {en} }