@misc{DallmeyerClaussenFischeretal.2015, author = {Dallmeyer, Anne and Claussen, M. and Fischer, N. and Haberkorn, K. and Wagner, S. and Pfeiffer, M. and Jin, L. and Khon, Vyacheslav and Wang, Y. and Herzschuh, Ulrike}, title = {The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {587}, issn = {1866-8372}, doi = {10.25932/publishup-40972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409727}, pages = {22}, year = {2015}, abstract = {The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i. e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.}, language = {en} } @misc{WangHuangSachseetal.2016, author = {Wang, Xinxin and Huang, Xianyu and Sachse, Dirk and Ding, Weihua and Xue, Jiantao}, title = {Molecular paleoclimate reconstructions over the last 9 ka from a peat sequence in South China}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {543}, issn = {1866-8372}, doi = {10.25932/publishup-41160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411608}, pages = {15}, year = {2016}, abstract = {To achieve a better understanding of Holocene climate change in the monsoon regions of China, we investigated the molecular distributions and carbon and hydrogen isotope compositions delta C-13 and delta D values) of long-chain n-alkanes in a peat core from the Shiwangutian SWGT) peatland, south China over the last 9 ka. By comparisons with other climate records, we found that the delta C-13 values of the long-chain n-alkanes can be a proxy for humidity, while the dD values of the long-chain n-alkanes primarily recorded the moisture source dD signal during 9-1.8 ka BP and responded to the dry climate during 1.8-0.3 ka BP. Together with the average chain length ACL) and the carbon preference index CPI) data, the climate evolution over last 9 ka in the SWGT peatland can be divided into three stages. During the first stage 9-5 ka BP), the delta C-13 values were depleted and CPI and Paq values were low, while ACL values were high. They reveal a period of warm and wet climate, which is regarded as the Holocene optimum. The second stage 5-1.8 ka BP) witnessed a shift to relatively cool and dry climate, as indicated by the more positive delta C-13 values and lower ACL values. During the third stage 1.8-0.3 ka BP), the delta C-13, delta D, CPI and Paq values showed marked increase and ACL values varied greatly, implying an abrupt change to cold and dry conditions. This climate pattern corresponds to the broad decline in Asian monsoon intensity through the latter part of the Holocene. Our results do not support a later Holocene optimum in south China as suggested by previous studies.}, language = {en} }