@phdthesis{Boettle2015, author = {B{\"o}ttle, Markus}, title = {Coastal floods in view of sea level rise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91074}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 111}, year = {2015}, abstract = {The sea level rise induced intensification of coastal floods is a serious threat to many regions in proximity to the ocean. Although severe flood events are rare they can entail enormous damage costs, especially when built-up areas are inundated. Fortunately, the mean sea level advances slowly and there is enough time for society to adapt to the changing environment. Most commonly, this is achieved by the construction or reinforcement of flood defence measures such as dykes or sea walls but also land use and disaster management are widely discussed options. Overall, albeit the projection of sea level rise impacts and the elaboration of adequate response strategies is amongst the most prominent topics in climate impact research, global damage estimates are vague and mostly rely on the same assessment models. The thesis at hand contributes to this issue by presenting a distinctive approach which facilitates large scale assessments as well as the comparability of results across regions. Moreover, we aim to improve the general understanding of the interplay between mean sea level rise, adaptation, and coastal flood damage. Our undertaking is based on two basic building blocks. Firstly, we make use of macroscopic flood-damage functions, i.e. damage functions that provide the total monetary damage within a delineated region (e.g. a city) caused by a flood of certain magnitude. After introducing a systematic methodology for the automatised derivation of such functions, we apply it to a total of 140 European cities and obtain a large set of damage curves utilisable for individual as well as comparative damage assessments. By scrutinising the resulting curves, we are further able to characterise the slope of the damage functions by means of a functional model. The proposed function has in general a sigmoidal shape but exhibits a power law increase for the relevant range of flood levels and we detect an average exponent of 3.4 for the considered cities. This finding represents an essential input for subsequent elaborations on the general interrelations of involved quantities. The second basic element of this work is extreme value theory which is employed to characterise the occurrence of flood events and in conjunction with a damage function provides the probability distribution of the annual damage in the area under study. The resulting approach is highly flexible as it assumes non-stationarity in all relevant parameters and can be easily applied to arbitrary regions, sea level, and adaptation scenarios. For instance, we find a doubling of expected flood damage in the city of Copenhagen for a rise in mean sea levels of only 11 cm. By following more general considerations, we succeed in deducing surprisingly simple functional expressions to describe the damage behaviour in a given region for varying mean sea levels, changing storm intensities, and supposed protection levels. We are thus able to project future flood damage by means of a reduced set of parameters, namely the aforementioned damage function exponent and the extreme value parameters. Similar examinations are carried out to quantify the aleatory uncertainty involved in these projections. In this regard, a decrease of (relative) uncertainty with rising mean sea levels is detected. Beyond that, we demonstrate how potential adaptation measures can be assessed in terms of a Cost-Benefit Analysis. This is exemplified by the Danish case study of Kalundborg, where amortisation times for a planned investment are estimated for several sea level scenarios and discount rates.}, language = {en} } @phdthesis{Zeitz2022, author = {Zeitz, Maria}, title = {Modeling the future resilience of the Greenland Ice Sheet}, doi = {10.25932/publishup-56883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568839}, school = {Universit{\"a}t Potsdam}, pages = {x, 189}, year = {2022}, abstract = {The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming - from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates - a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58\% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen's flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios - while still staying within the limits of the Paris Agreement - include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term.}, language = {en} }