@article{BuechnerJohnMertensetal.2018, author = {B{\"u}chner, D{\"o}rthe and John, Leonard and Mertens, Monique and Wessig, Pablo}, title = {Detection of dsDNA with [1,3]Dioxolo[4,5-f]benzodioxol (DBD) Dyes}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {60}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201804057}, pages = {16183 -- 16190}, year = {2018}, abstract = {DBD fluorescent dyes have proven to be useful in numerous applications. To widen the range of biological applications, we propose three different types of DBD molecules that have been modified in such a way that DNA interaction becomes probable. After the successful synthesis of all three compounds, we tested their fluorescent properties and their DNA binding abilities. Two of the three probes exhibit an interaction with dsDNA with subsequent fluorescence enhancement. The determined binding constants of the two new DNA dyes are comparable to other minorgroove-binding dyes. Their large Stokes shifts and their long fluorescent lifetimes are outstanding features of these dyes.}, language = {en} } @misc{SchwarzeRiemerMuelleretal.2019, author = {Schwarze, Thomas and Riemer, Janine and M{\"u}ller, Holger and John, Leonard and Holdt, Hans-J{\"u}rgen and Wessig, Pablo}, title = {Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1136}, issn = {1866-8372}, doi = {10.25932/publishup-43748}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437482}, pages = {13}, year = {2019}, abstract = {Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.}, language = {en} } @article{SchwarzeRiemerMuelleretal.2019, author = {Schwarze, Thomas and Riemer, Janine and M{\"u}ller, Holger and John, Leonard and Holdt, Hans-J{\"u}rgen and Wessig, Pablo}, title = {Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response}, series = {Chemistry - a European journal}, volume = {25}, journal = {Chemistry - a European journal}, number = {53}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201902536}, pages = {12412 -- 12422}, year = {2019}, abstract = {Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different K-d values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (K-d=106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (K-d=78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.}, language = {en} }