@phdthesis{Krivenkov2020, author = {Krivenkov, Maxim}, title = {Spin textures and electron scattering in nanopatterned monolayer graphene}, doi = {10.25932/publishup-48701}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487017}, school = {Universit{\"a}t Potsdam}, pages = {x, 176}, year = {2020}, abstract = {The current thesis is focused on the properties of graphene supported by metallic substrates and specifically on the behaviour of electrons in such systems. Methods of scanning tunneling microscopy, electron diffraction and photoemission spectroscopy were applied to study the structural and electronic properties of graphene. The purpose of the first part of this work is to introduce the most relevant aspects of graphene physics and the methodical background of experimental techniques used in the current thesis. The scientific part of this work starts with the extensive study by means of scanning tunneling microscopy of the nanostructures that appear in Au intercalated graphene on Ni(111). This study was aimed to explore the possible structural explanations of the Rashba-type spin splitting of ~100 meV experimentally observed in this system — much larger than predicted by theory. It was demonstrated that gold can be intercalated under graphene not only as a dense monolayer, but also in the form of well-periodic arrays of nanoclusters, a structure previously not reported. Such nanocluster arrays are able to decouple graphene from the strongly interacting Ni substrate and render it quasi-free-standing, as demonstrated by our DFT study. At the same time calculations confirm strong enhancement of the proximity-induced SOI in graphene supported by such nanoclusters in comparison to monolayer gold. This effect, attributed to the reduced graphene-Au distance in the case of clusters, provides a large Rashba-type spin splitting of ~60 meV. The obtained results not only provide a possible mechanism of SOI enhancement in this particular system, but they can be also generalized for graphene on other strongly interacting substrates intercalated by nanostructures of heavy noble d metals. Even more intriguing is the proximity of graphene to heavy sp-metals that were predicted to induce an intrinsic SOI and realize a spin Hall effect in graphene. Bismuth is the heaviest stable sp-metal and its compounds demonstrate a plethora of exciting physical phenomena. This was the motivation behind the next part of the current thesis, where structural and electronic properties of a previously unreported phase of Bi-intercalated graphene on Ir(111) were studied by means of scanning tunneling microscopy, spin- and angle-resolved photoemission spectroscopy and electron diffraction. Photoemission experiments revealed a remarkable, nearly ideal graphene band structure with strongly suppressed signatures of interaction between graphene and the Ir(111) substrate, moreover, the characteristic moir{\´e} pattern observed in graphene on Ir(111) by electron diffraction and scanning tunneling microscopy was strongly suppressed after intercalation. The whole set of experimental data evidences that Bi forms a dense intercalated layer that efficiently decouples graphene from the substrate. The interaction manifests itself only in the n-type charge doping (~0.4 eV) and a relatively small band gap at the Dirac point (~190 meV). The origin of this minor band gap is quite intriguing and in this work it was possible to exclude a wide range of mechanisms that could be responsible for it, such as induced intrinsic spin-orbit interaction, hybridization with the substrate states and corrugation of the graphene lattice. The main origin of the band gap was attributed to the A-B symmetry breaking and this conclusion found support in the careful analysis of the interference effects in photoemission that provided the band gap estimate of ~140 meV. While the previous chapters were focused on adjusting the properties of graphene by proximity to heavy metals, graphene on its own is a great object to study various physical effects at crystal surfaces. The final part of this work is devoted to a study of surface scattering resonances by means of photoemission spectroscopy, where this effect manifests itself as a distinct modulation of photoemission intensity. Though scattering resonances were widely studied in the past by means of electron diffraction, studies about their observation in photoemission experiments started to appear only recently and they are very scarce. For a comprehensive study of scattering resonances graphene was selected as a versatile model system with adjustable properties. After the theoretical and historical introduction to the topic of scattering resonances follows a detailed description of the unusual features observed in the photoemission spectra obtained in this work and finally the equivalence between these features and scattering resonances is proven. The obtained photoemission results are in a good qualitative agreement with the existing theory, as verified by our calculations in the framework of the interference model. This simple model gives a suitable explanation for the general experimental observations. The possibilities of engineering the scattering resonances were also explored. A systematic study of graphene on a wide range of substrates revealed that the energy position of the resonances is in a direct relation to the magnitude of charge transfer between graphene and the substrate. Moreover, it was demonstrated that the scattering resonances in graphene on Ir(111) can be suppressed by nanopatterning either by a superlattice of Ir nanoclusters or by atomic hydrogen. These effects were attributed to strong local variations of tork function and/or destruction of long-range order of thephene lattice. The tunability of scattering resonances can be applied for optoelectronic devices based on graphene. Moreover, the results of this study expand the general understanding of the phenomenon of scattering resonances and are applicable to many other materials besides graphene.}, language = {en} }