@article{FandrichBullerWischerhoffetal.2012, author = {Fandrich, Artur and Buller, Jens and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Electrochemical detection of the thermally induced phase transition of a thin stimuli-responsive polymer film}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {13}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100924}, pages = {2020 -- 2023}, year = {2012}, language = {en} } @article{HovestaedtMemczakPleineretal.2014, author = {Hovestaedt, Marc and Memczak, Henry and Pleiner, Dennis and Zhang, Xin and Rappich, Joerg and Bier, Frank Fabian and St{\"o}cklein, Walter F. M.}, title = {Characterization of a new maleimido functionalization of gold for surface plasmon resonance spectroscopy}, series = {Journal of molecular recognition : an international journal devoted to research on specific molecular recognition in chemistry, biology, biotechnology and medicine}, volume = {27}, journal = {Journal of molecular recognition : an international journal devoted to research on specific molecular recognition in chemistry, biology, biotechnology and medicine}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0952-3499}, doi = {10.1002/jmr.2396}, pages = {707 -- 713}, year = {2014}, abstract = {Para-maleimidophenyl (p-MP) modified gold surfaces have been prepared by one-step electrochemical deposition and used in surface plasmon resonance (SPR) studies. Therefore, a FITC mimotope peptide (MP1, 12 aa), a human mucin 1 epitope peptide (MUC, 9 aa) and a protein with their specific antibodies were used as model systems. The peptides were modified with an N-terminal cysteine for covalent and directed coupling to the maleimido functionalized surface by means of Michael addition. The coupling yield of the peptide, the binding characteristics of antibody and the unspecific adsorption of the analytes were investigated. The results expand the spectrum of biosensors usable with p-MP by widely used SPR and support its potential to be versatile for several electrochemical and optical biosensors. This allows the combination of an electrochemical and optical read-out for a broad variety of biomolecular interactions on the same chip. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{HuettlHettrichRiedeletal.2015, author = {H{\"u}ttl, Christine and Hettrich, Cornelia and Riedel, Melanie and Henklein, Petra and Rawel, Harshadrai Manilal and Bier, Frank Fabian}, title = {Development of Peptidyl Lysine Dendrons: 1,3-Dipolar Cycloaddition for Peptide Coupling and Antibody Recognition}, series = {Chemical biology \& drug design}, volume = {85}, journal = {Chemical biology \& drug design}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1747-0277}, doi = {10.1111/cbdd.12444}, pages = {565 -- 573}, year = {2015}, abstract = {A straightforward synthesis strategy to multimerize a peptide mimotopes for antibody B13-DE1 recognition is described based on lysine dendrons as multivalent scaffolds. Lysine dendrons that possess N-terminal alkyne residues at the periphery were quantitative functionalized with azido peptides using click chemistry. The solid-phase peptide synthesis (SPPS) allows preparing the peptide dendron in high purity and establishing the possibility of automation. The presented peptide dendron is a promising candidate as multivalent ligand and was used for antibody B13-DE1 recognition. The binding affinity increases with higher dendron generation without loss of specificity. The analysis of biospecific interaction between the synthesized peptide dendron and the antibody was done via surface plasmon resonance (SPR) technique. The presented results show a promising tool for investigations of antigen-antibody reactions.}, language = {en} } @article{WeilerMenzelPertschetal.2016, author = {Weiler, Markus and Menzel, Christoph and Pertsch, Thomas and Alaee, Rasoul and Rockstuhl, Carsten and Pacholski, Claudia}, title = {Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {8}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b08636}, pages = {26392 -- 26399}, year = {2016}, abstract = {The high potential of bottom-up fabrication strategies for realizing sophisticated optical sensors combining the high sensitivity of a surface plasmon resonance with the exceptional properties of stimuli-responsive hydrogel is demonstrated. The sensor is composed of a periodic hole array in a gold film whose holes are filled with gold-capped poly(N-isoproyl-acrylamide) (polyNIPAM) microspheres. The production of this sensor relies on a pure chemical approach enabling simple, time-efficient, and cost-efficient preparation of sensor platforms covering areas of cm(2). The transmission spectrum of this plasmonic sensor shows a strong interaction between propagating surface plasmon polaritons at the metal film surface and localized surface plasmon resonance of the gold cap on top of the polyNIPAM microspheres. Computer simulations support this experimental observation. These interactions lead to distinct changes in the transmission spectrum, which allow for the simultaneous, sensitive optical detection of refractive index changes in the surrounding medium and the swelling state of the embedded polyNIPAM microsphere under the gold cap. The volume of the polyNIPAM microsphere located underneath the gold cap can be changed by certain stimuli such as temperature, pH, ionic strength, and distinct molecules bound to the hydrogel matrix facilitating the detection of analytes which do not change the refractive index of the surrounding medium significantly.}, language = {en} } @article{WuGlebeBoeker2017, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Fabrication of Thermoresponsive Plasmonic Core-Satellite Nanoassemblies with a Tunable Stoichiometry via Surface-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization from Silica Nanoparticles}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201700092}, pages = {10}, year = {2017}, abstract = {This work presents a fabrication of thermoresponsive plasmonic core-satellite nanoassemblies. The structure has a silica nanoparticle core surrounded by gold nanoparticle satellites using thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains as scaffolds. The thiol-terminated PNIPAM shell is densely grafted on the silica core via surface-initiated reversible addition-fragmentation chain transfer polymerization and used to anchor numerous gold nanoparticle satellites with a tunable stoichiometry. Below and above lower critical solution temperature, the chain conformation of PNIPAM reversibly changes between swollen and shrunken state. The reversible change of the polymer size varies the refractive index of the local medium surrounding the satellites and the distance between them. The two effects together lead to the thermoresponsive plasmonic properties of the nanoassemblies. Under different satellite densities, two distinctive plasmonic features appear.}, language = {en} } @article{BalderasValadezSchuermannPacholski2019, author = {Balderas-Valadez, Ruth Fabiola and Sch{\"u}rmann, Robin Mathis and Pacholski, Claudia}, title = {One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance}, series = {Frontiers in chemistry}, volume = {7}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00593}, pages = {12}, year = {2019}, abstract = {Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot.}, language = {en} } @article{RosencrantzTangSchulteOsseilietal.2019, author = {Rosencrantz, Sophia and Tang, Jo Sing Julia and Schulte-Osseili, Christine and B{\"o}ker, Alexander and Rosencrantz, Ruben R.}, title = {Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin-3}, series = {Macromolecular chemistry and physics}, volume = {220}, journal = {Macromolecular chemistry and physics}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201900293}, pages = {7}, year = {2019}, abstract = {Glycan-protein interactions are essential biological processes with many disease-related modulations and variations. One of the key proteins involved in tumor progression and metastasis is galectin-3 (Gal-3). A lot of effort is put into the development of Gal-3 inhibitors as new therapeutic agents. The avidity of glycan-protein interactions is strongly enhanced by multivalent ligand presentation. Multivalent presentation of glycans can be accomplished by utilizing glycopolymers, which are polymers with pendent glycan groups. For the production of glycopolymers, glycomonomers are synthesized by a regioselective, microwave-assisted approach starting from lactose. The resulting methacrylamide derivatives are polymerized by RAFT and immobilized on gold surfaces using the trithiocarbonate group of the chain transfer agent. Surface plasmon resonance spectroscopy enables the label free kinetic characterization of Gal-3 binding to these multivalent glycopolymers. The measurements indicate oligomerization of Gal-3 upon exposure to multivalent environments and reveal strong specific interaction with the immobilized polymers.}, language = {en} } @misc{KunstmannEngstroemWehleetal.2020, author = {Kunstmann, Ruth Sonja and Engstr{\"o}m, Olof and Wehle, Marko and Widmalm, G{\"o}ran and Santer, Mark and Barbirz, Stefanie}, title = {Increasing the affinity of an O-Antigen polysaccharide binding site in Shigella flexneri bacteriophage Sf6 tailspike protein}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {32}, issn = {1866-8372}, doi = {10.25932/publishup-51941}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519418}, pages = {13}, year = {2020}, abstract = {Broad and unspecific use of antibiotics accelerates spread of resistances. Sensitive and robust pathogen detection is thus important for a more targeted application. Bacteriophages contain a large repertoire of pathogen-binding proteins. These tailspike proteins (TSP) often bind surface glycans and represent a promising design platform for specific pathogen sensors. We analysed bacteriophage Sf6 TSP that recognizes the O-polysaccharide of dysentery-causing Shigella flexneri to develop variants with increased sensitivity for sensor applications. Ligand polyrhamnose backbone conformations were obtained from 2D H-1,H-1-trNOESY NMR utilizing methine-methine and methine-methyl correlations. They agreed well with conformations obtained from molecular dynamics (MD), validating the method for further predictions. In a set of mutants, MD predicted ligand flexibilities that were in good correlation with binding strength as confirmed on immobilized S. flexneri O-polysaccharide (PS) with surface plasmon resonance. In silico approaches combined with rapid screening on PS surfaces hence provide valuable strategies for TSP-based pathogen sensor design.}, language = {en} } @article{BalderasValadezPacholski2021, author = {Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia}, title = {Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c07034}, pages = {36436 -- 36444}, year = {2021}, abstract = {Label-free optical sensors are attractive candidates, for example, for detecting toxic substances and monitoring biomolecular interactions. Their performance can be pushed by the design of the sensor through clever material choices and integration of components. In this work, two porous materials, namely, porous silicon and plasmonic nanohole arrays, are combined in order to obtain increased sensitivity and dual-mode sensing capabilities. For this purpose, porous silicon monolayers are prepared by electrochemical etching and plasmonic nanohole arrays are obtained using a bottom-up strategy. Hybrid sensors of these two materials are realized by transferring the plasmonic nanohole array on top of the porous silicon. Reflectance spectra of the hybrid sensors are characterized by a fringe pattern resulting from the Fabry-P{\´e}rot interference at the porous silicon borders, which is overlaid with a broad dip based on surface plasmon resonance in the plasmonic nanohole array. In addition, the hybrid sensor shows a significant higher reflectance in comparison to the porous silicon monolayer. The sensitivities of the hybrid sensor to refractive index changes are separately determined for both components. A significant increase in sensitivity from 213 ± 12 to 386 ± 5 nm/RIU is determined for the transfer of the plasmonic nanohole array sensors from solid glass substrates to porous silicon monolayers. In contrast, the spectral position of the interference pattern of porous silicon monolayers in different media is not affected by the presence of the plasmonic nanohole array. However, the changes in fringe pattern reflectance of the hybrid sensor are increased 3.7-fold after being covered with plasmonic nanohole arrays and could be used for high-sensitivity sensing. Finally, the capability of the hybrid sensor for simultaneous and independent dual-mode sensing is demonstrated.}, language = {en} }