@misc{WestphalLazaridesVock2021, author = {Westphal, Andrea and Lazarides, Rebecca and Vock, Miriam}, title = {Are some students graded more appropriately than others?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {3}, issn = {1866-8364}, doi = {10.25932/publishup-56333}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563330}, pages = {19}, year = {2021}, abstract = {Background Building on the Realistic Accuracy Model, this paper explores whether it is easier for teachers to assess the achievement of some students than others. Accordingly, we suggest that certain individual characteristics of students, such as extraversion, academic self-efficacy, and conscientiousness, may guide teachers' evaluations of student achievement, resulting in more appropriate judgements and a stronger alignment of assigned grades with students' actual achievement level (as measured using standardized tests). Aims We examine whether extraversion, academic self-efficacy, and conscientiousness moderate the relations between teacher-assigned grades and students' standardized test scores in mathematics. Sample This study uses a representative sample of N = 5,919 seventh-grade students in Germany (48.8\% girls; mean age: M = 12.5, SD = 0.62) who participated in a national, large-scale assessment focusing on students' academic development. Methods We specified structural equation models to examine the inter-relations of teacher-assigned grades with students' standardized test scores in mathematics, Big Five personality traits, and academic self-efficacy, while controlling for students' socioeconomic status, gender, and age. Results The correlation between teacher-assigned grades and standardized test scores in mathematics was r = .40. Teacher-assigned grades more closely related to standardized test scores when students reported higher levels of conscientiousness (beta = .05, p = .002). Students' extraversion and academic self-efficacy did not moderate the relationship between teacher-assigned grades and standardized test scores. Conclusions Our findings indicate that students' conscientiousness is a personality trait that seems to be important when it comes to how closely mathematics teachers align their grades to standardized test scores.}, language = {en} } @phdthesis{Spooner2021, author = {Spooner, Cameron}, title = {How does lithospheric configuration relate to deformation in the Alpine region?}, doi = {10.25932/publishup-51644}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516442}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 138}, year = {2021}, abstract = {Forming as a result of the collision between the Adriatic and European plates, the Alpine orogen exhibits significant lithospheric heterogeneity due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited features from preceeding orogenies. This implies that the thermal and rheological configuration of the lithosphere also varies significantly throughout the region. Lithology and temperature/pressure conditions exert a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone, which can be regarded as the lower bound to the seismogenic zone. Therefore, they influence the spatial distribution of seismicity within a lithospheric plate. In light of this, accurately constrained geophysical models of the heterogeneous Alpine lithospheric configuration, are crucial in describing regional deformation patterns. However, despite the amount of research focussing on the area, different hypotheses still exist regarding the present-day lithospheric state and how it might relate to the present-day seismicity distribution. This dissertaion seeks to constrain the Alpine lithospheric configuration through a fully 3D integrated modelling workflow, that utilises multiple geophysical techniques and integrates from all available data sources. The aim is therefore to shed light on how lithospheric heterogeneity may play a role in influencing the heterogeneous patterns of seismicity distribution observed within the region. This was accomplished through the generation of: (i) 3D seismically constrained, structural and density models of the lithosphere, that were adjusted to match the observed gravity field; (ii) 3D models of the lithospheric steady state thermal field, that were adjusted to match observed wellbore temperatures; and (iii) 3D rheological models of long term lithospheric strength, with the results of each step used as input for the following steps. Results indicate that the highest strength within the crust (~ 1 GPa) and upper mantle (> 2 GPa), are shown to occur at temperatures characteristic for specific phase transitions (more felsic crust: 200 - 400 °C; more mafic crust and upper lithospheric mantle: ~600 °C) with almost all seismicity occurring in these regions. However, inherited lithospheric heterogeneity was found to significantly influence this, with seismicity in the thinner and more mafic Adriatic crust (~22.5 km, 2800 kg m-3, 1.30E-06 W m-3) occuring to higher temperatures (~600 °C) than in the thicker and more felsic European crust (~27.5 km, 2750 kg m-3, 1.3-2.6E-06 W m-3, ~450 °C). Correlation between seismicity in the orogen forelands and lithospheric strength, also show different trends, reflecting their different tectonic settings. As such, events in the plate boundary setting of the southern foreland correlate with the integrated lithospheric strength, occurring mainly in the weaker lithosphere surrounding the strong Adriatic indenter. Events in the intraplate setting of the northern foreland, instead correlate with crustal strength, mainly occurring in the weaker and warmer crust beneath the Upper Rhine Graben. Therefore, not only do the findings presented in this work represent a state of the art understanding of the lithospheric configuration beneath the Alps and their forelands, but also a significant improvement on the features known to significantly influence the occurrence of seismicity within the region. This highlights the importance of considering lithospheric state in regards to explaining observed patterns of deformation.}, language = {en} }