@article{StadionSchuermann2020, author = {Stadion, Mandy and Sch{\"u}rmann, Annette}, title = {Intermittent fasting}, series = {Psychotherapeut}, volume = {66}, journal = {Psychotherapeut}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0935-6185}, doi = {10.1007/s00278-020-00471-5}, pages = {23 -- 27}, year = {2020}, abstract = {A long-term positive energy balance leads to overweight and obesity. Adiposity is the main risk factor for cardiovascular diseases, type 2 diabetes and cancer and is often accompanied by depression. The increasing prevalence creates a major problem for the healthcare system. The conservative management of obesity strives for weight loss by reducing the daily caloric intake and increasing physical activity as well as an improvement in the quality of life supported by psychological interventions. For reducing body weight, intermittent fasting represents an alternative to continuous calorie restriction as it can be easily integrated into daily life. In this form of diet calorie intake is limited in time, i.e. on 2 days in the week or 6-10 h per day. Animal and human studies provide evidence that intermittent fasting over a longer time period is a suitable method to decrease body fat and to improve many metabolic parameters. Fasting alters metabolism and activates specific cellular pathways. These have not only cardioprotective effects but also neuroprotective and antidepressive effects. In this article the currently discussed mechanisms induced by intermittent fasting are highlighted and the essential observations from randomized controlled human trials are presented.}, language = {de} } @article{HoffmannWarschburger2015, author = {Hoffmann, Svenja and Warschburger, Petra}, title = {Body image in obese children and adolescents. Body dissatisfaction and body size perception in relation to quality of life and weight loss}, series = {Psychotherapeut}, volume = {60}, journal = {Psychotherapeut}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0935-6185}, doi = {10.1007/s00278-015-0060-5}, pages = {498 -- 504}, year = {2015}, abstract = {Body dissatisfaction and an unrealistic perception of own body size are particularly common in obese children and adolescents; however, little is known about the association with weight-related quality of life and the impact on successful long-term weight loss. At the beginning of an inpatient child obesity rehabilitation program, 408 children and adolescents aged 9-12 years completed a questionnaire on body image (body silhouettes) and a body weight-specific questionnaire for overweight and obese children and adolescents (GW-LQ-KJ) on quality of life. Height and weight were measured by a physician at the beginning and 1 year after inpatient hospitalization. Of the participants 91.9 \% reported body dissatisfaction and 75.7 \% underestimated their own body size. There were no gender-specific differences in body dissatisfaction but boys perceived their body size more realistically than girls. Participants with body dissatisfaction and realistic body size perception showed a reduced weight-related quality of life. Those participants who realistically perceived their body size also lost less weight in the long term. The subjective underestimation of body size proved to be important for reduced weight-related quality of life and more pronounced long-term weight loss; therefore, body image should be taken into account in multimodal treatment programs.}, language = {de} } @phdthesis{Leicht2008, author = {Leicht, Katja}, title = {Positionelle Klonierung von Tbc1d1 als Kandidatengen f{\"u}r Adipositas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-34610}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nob1 (New Zealand obese 1) bezeichnet einen Adipositas-QTL auf Chr. 5 der Maus (LODBMI >3,3), der in einem R{\"u}ckkreuzungsexperiment der Mausst{\"a}mme NZO (adip{\"o}s) und SJL (schlank) identifiziert wurde. Um Kandidatengene f{\"u}r Adipositas zu finden, wurden mehr als 300 Nob1-Transkripte mit Hilfe von Genexpressionsanalysen auf Unterschiede in stoffwechselrelevanten Geweben zwischen beiden Mausst{\"a}mmen untersucht. Sieben Gene zeigten eine differentielle Expression: 2310045A20Rik, Tbc1d1, Ppp1cb, Mll5, Insig1, Abhd1 und Alox5ap. Die codierenden Bereiche dieser Gene wurden anschließend auf Sequenzunterschiede zwischen NZO und SJL untersucht. Nur im Gen Tbc1d1, das im Peak-Bereich des Nob1 lokalisiert ist, wurde eine SJL-spezifische Deletion von sieben Basen detektiert, die zu einer Leserasterverschiebung und einem vorzeitigen Abbruch des Proteins in der funktionellen Rab-GAP-Dom{\"a}ne f{\"u}hrt (Loss-of-Function-Mutation). Interessanterweise wurde eine Variante von TBC1D1 (R125W) in Kopplungsanalysen mit Adipositas beim Menschen assoziiert (Stone et al., 2006). TBC1D1 zeigt eine hohe Homologie zu TBC1D4 (AS160), das im Insulinsignalweg eine wichtige Rolle spielt. In 17 weiteren Genen im Peak-Bereich des Nob1 wurde keine weitere SJL-spezifischen Mutation detektiert. Bei NZO-Tieren erfolgte die Tbc1d1-mRNA-Expression vorwiegend in glycolytischen Fasern des Skelettmuskels. Zudem wurden zwei gewebsspezifisch exprimierte Tbc1d1-Isoformen identifiziert, die sich durch alternatives Splicen der Exone 12 und 13 unterscheiden. Die im Rahmen dieser Arbeit gefundenen Ergebnisse machen Tbc1d1 zu einem plausiblen Kandidatengen f{\"u}r den Nob1-QTL. Welche Funktion Tbc1d1 im Glucose- und Fettstoffwechsel des Skelettmuskels hat, muss in weiteren Analysen untersucht werden.}, language = {de} } @phdthesis{Andres2008, author = {Andres, Janin}, title = {Untersuchungen {\"u}ber Regulationsmechanismen der 11beta-Hydroxysteroid Dehydrogenase Typ 1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33033}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Die 11beta-HSD1 reguliert intrazellul{\"a}r die Cortisolkonzentration durch Regeneration von Cortison z.B. aus dem Blutkreislauf, zu Cortisol. Daher stellt diese ein wichtiges Element in der Glucocorticoid-vermittelten Genregulation dar. Die 11beta-HSD1 wird ubiquit{\"a}r exprimiert, auf hohem Niveau besonders in Leber, Fettgewebe und glatten Muskelzellen. Insbesondere die Bedeutung der 11beta-HSD1 in Leber und Fettgewebe konnte mehrfach nachgewiesen werden. In der Leber f{\"u}hrte eine erh{\"o}hte Aktivit{\"a}t aufgrund einer {\"U}berexpression in M{\"a}usen zu einer verst{\"a}rkten Gluconeogeneserate. Des Weiteren konnte gezeigt werden, dass eine erh{\"o}hte Expression und erh{\"o}hte Enzymaktivit{\"a}t der 11beta-HSD1 im subkutanen und viszeralen Fettgewebe assoziiert ist mit Fettleibigkeit, Insulinresistenz und Dyslipid{\"a}mie. {\"U}ber die Regulation ist jedoch noch wenig bekannt. Zur Untersuchung der Promotoraktivit{\"a}t wurde der Promotorbereich von -3034 bis +188, vor und nach dem Translations- und Transkriptionsstart, der 11beta-HSD1 kloniert. 8 Promotorfragmente wurden mittels Dual-Luciferase-Assay in humanen HepG2-Zellen sowie undifferenzierten und differenzierten murinen 3T3-L1-Zellen untersucht. Anschließend wurde mittels nicht-radioaktiven EMSA die Bindung des TATA-Binding Proteins (TBP) sowie von CCAAT/Enhancer-Binding-Proteinen (C/EBP) an ausgew{\"a}hlte Promotorregionen analysiert. Nach der Charakterisierung des Promotors wurden spezifische endogene und exogene Regulatoren untersucht. Fetts{\"a}uren modifizieren die Entstehung von Adipositas und Insulinresistenz. Ihre Wirkung wird u.a. PPARgamma-abh{\"a}ngig vermittelt und kann durch das Inkretin (Glucose-dependent insulinotropic Peptide) GIP modifiziert werden. So wurden die Effekte von unterschiedlichen Fetts{\"a}uren, vom PPARgamma Agonisten Rosiglitazon sowie dem Inkretin GIP auf die Expression und Enzymaktivit{\"a}t der 11beta-HSD1 untersucht. Dies wurde in-vitro-, tierexperimentell und in humanen in-vivo-Studien realisiert. Zuletzt wurden 2 Single Nucleotide Polymorphismen (SNP) im Promotorbereich der 11beta-HSD1 in der Zellkultur im Hinblick auf potentielle Funktionalit{\"a}t analysiert sowie die Assoziation mit Diabetes mellitus Typ 2 und K{\"o}rpergewicht in der MeSyBePo-Kohorte bei rund 1.800 Personen untersucht. Die Luciferase-Assays zeigten basal eine zell-spezifische Regulation der 11beta-HSD1, wobei in allen 3 untersuchten Zelltypen die Bindung eines Repressors nachgewiesen werden konnte. Zudem konnte eine m{\"o}gliche Bindung des TBPs sowie von C/EBP-Proteinen an verschiedene Positionen gezeigt werden. Die Transaktivierungsassays mit den C/EBP-Proteinen -alpha, -beta und -delta zeigten eben-falls eine zellspezifische Regulation des 11beta-HSD1-Promotors. Die Aktivit{\"a}t und Expression der 11beta-HSD1 wurde durch die hier untersuchten endogenen und exogenen Faktoren spezifisch modifiziert, was sowohl in-vitro als auch in-vivo in unterschiedlichen Modellsystemen dargestellt werden konnte. Die Charakterisierung der MeSyBePo-Kohorte ergab keine direkten Assoziationen zwischen Polymorphismus und klinischem Ph{\"a}notyp, jedoch Tendenzen f{\"u}r eine erh{\"o}htes K{\"o}rper-gewicht und Typ 2 Diabetes mellitus in Abh{\"a}ngigkeit des Genotyps. Der Promotor der 11beta-HSD1 konnte aufgrund der Daten aus den Luciferaseassays sowie den Daten aus den EMSA-Analysen n{\"a}her charakterisiert werden. Dieser zeigt eine variable und zell-spezifische Regulation. Ein wichtiger Regulator stellen insbesondere in den HepG2-Zellen die C/EBP-Proteine -alpha, -beta und -delta dar. Aus den in-vivo-Studien ergab sich eine Regulation der 11beta-HSD1 durch endogene, exogene und pharmakologische Substanzen, die durch die Zellkulturversuche best{\"a}tigt und n{\"a}her charakterisiert werden konnten.}, language = {de} }