@article{ShakiFischer2017, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Competing Biases in Mental Arithmetic}, series = {Frontiers in human neuroscience}, volume = {11}, journal = {Frontiers in human neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2017.00037}, year = {2017}, abstract = {Mental arithmetic exhibits various biases. Among those is a tendency to overestimate addition and to underestimate subtraction outcomes. Does such "operational momentum" (OM) also affect multiplication and division? Twenty-six adults produced lines whose lengths corresponded to the correct outcomes of multiplication and division problems shown in symbolic format. We found a reliable tendency to over-estimate division outcomes, i.e., reverse OM. We suggest that anchoring on the first operand (a tendency to use this number as a reference for further quantitative reasoning) contributes to cognitive biases in mental arithmetic.}, language = {en} } @misc{ShakiFischer2017, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Competing Biases in Mental Arithmetic}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103492}, pages = {5}, year = {2017}, abstract = {Mental arithmetic exhibits various biases. Among those is a tendency to overestimate addition and to underestimate subtraction outcomes. Does such "operational momentum" (OM) also affect multiplication and division? Twenty-six adults produced lines whose lengths corresponded to the correct outcomes of multiplication and division problems shown in symbolic format. We found a reliable tendency to over-estimate division outcomes, i.e., reverse OM. We suggest that anchoring on the first operand (a tendency to use this number as a reference for further quantitative reasoning) contributes to cognitive biases in mental arithmetic.}, language = {en} }