@phdthesis{Mabrok2013, author = {Mabrok, Hoda Hussein Bakr}, title = {Protective role of lignan-converting bacteria on chemically-induced breast cancer in gnotobiotic rats}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64933}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Enterolignans (enterodiol and enterolactone) exhibit structural similarity to estradiol and have therefore been hypothesized to modulate hormone related cancers such as breast cancer. The bioactivation of the plant lignan secoisolariciresinol diglucoside (SDG) requires the transformation by intestinal bacteria including the deglycosylation of SDG to secoisolariciresinol (SECO) followed by demethylation and dehydroxylation of SECO to enterodiol (ED). Finally, ED is dehydrogenated to enterolactone (EL). It is unclear whether the bacterial activation of SDG to ED and EL is crucial for the cancer preventing effects of dietary lignans. The possible protective effect of bacterial lignan transformation on a 7,12 dimethylbenz(a)anthracene (DMBA)-induced breast cancer in gnotobiotic rats was investigated. Germ-free rats were associated with a defined lignan-converting consortium (Clostridium saccharogumia, Blautia producta, Eggerthella lenta, and Lactonifactor longoviformis). The rats colonized with lignan-converting bacteria consortium (LCC) were fed a lignan-rich flaxseed diet and breast cancer was chemical induced. Identically treated germ-free rats served as control. All bacteria of the consortium successfully colonized the intestine of the LCC rats. The plant lignan SDG was converted into the enterolignans ED and EL in the LCC rats but not in the germ-free rats. This transformation did not influence cancer incidence but significantly decreased tumor numbers per tumor-bearing rat, and tumor size. Cell proliferation was significantly inhibited and apoptosis was significantly induced in LCC rats. No differences between LCC and control rats were observed in the expression of the genes encoding the estrogen receptors (ERα and ERβ) and G-coupled protein receptor 30 (GPR30). Similar findings were observed for both insulin-like growth factor 1 (IGF-1) and epidermal growth factor receptor (EGFR) genes involved in tumor growth. Proteome analysis revealed that 24 proteins were differentially expressed in tumor tissue from LCC and germ-free. RanBP-type and C3HC4-type zinc finger-containing protein 1 (RBCK1) and poly(rC)-binding protein 1 (PBCP1) were down-regulated by 3.2- and 2.0-fold, respectively. These proteins are associated with cell proliferation. The activity of selected enzymes involved in the degradation of oxidants in plasma and liver was significantly increased in the LCC rats. However, plasma and liver concentrations of reduced glutathione (non-enzymatic antioxidant) and malondialdehyde (oxidative stress marker) did not differ between the groups. In conclusion, the bacterial conversion of plant lignan to enterolignans beneficially influences their anti-cancer effect. However, the mechanisms involved in these effects remain elusive.}, language = {en} }