@article{WienhoeferLindenmaierZehe2011, author = {Wienh{\"o}fer, Jan and Lindenmaier, Falk and Zehe, Erwin}, title = {Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides}, series = {Vadose zone journal}, volume = {10}, journal = {Vadose zone journal}, number = {2}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2009.0182}, pages = {496 -- 511}, year = {2011}, abstract = {Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model, which further suggested that effective pore pressures at the slip surface were partially differing from the borehole observations and were related to preferential infiltration and subsurface flow in adjacent areas. It appears that in a setting like the Heumoser landslide, hydrologic processes delicately influence slope mobility through their control on pore pressure dynamics and the weight of the landslide body, which challenges observation and modeling. Moreover, it appears that their simplicity, and especially their high sensitivity to parameter variations, limits the conclusions that can be drawn from infinite slope models.}, language = {en} } @article{WienhoeferLindenmaierIhringeretal.2009, author = {Wienh{\"o}fer, Jan and Lindenmaier, Falk and Ihringer, J{\"u}rgen and Zehe, Erwin}, title = {Characterization of soil hydraulic properties on a creeping Alpine slope}, isbn = {978-1-901502-89-3}, year = {2009}, language = {en} } @article{ZeheElsenbeerLindenmaieretal.2007, author = {Zehe, Erwin and Elsenbeer, Helmut and Lindenmaier, Falk and Schulz, K. and Bl{\"o}schl, G{\"u}nter}, title = {Patterns of predictability in hydrological threshold systems}, issn = {0043-1397}, doi = {10.1029/2006wr005589}, year = {2007}, abstract = {[1] Observations of hydrological response often exhibit considerable scatter that is difficult to interpret. In this paper, we examine runoff production of 53 sprinkling experiments on the water-repellent soils in the southern Alps of Switzerland; simulated plot scale tracer transport in the macroporous soils at the Weiherbach site, Germany; and runoff generation data from the 2.3-km(2) Tannhausen catchment, Germany, that has cracking soils. The response at the three sites is highly dependent on the initial soil moisture state as a result of the threshold dynamics of the systems. A simple statistical model of threshold behavior is proposed to help interpret the scatter in the observations. Specifically, the model portrays how the inherent macrostate uncertainty of initial soil moisture translates into the scatter of the observed system response. The statistical model is then used to explore the asymptotic pattern of predictability when increasing the number of observations, which is normally not possible in a field study. Although the physical and chemical mechanisms of the processes at the three sites are different, the predictability patterns are remarkably similar. Predictability is smallest when the system state is close to the threshold and increases as the system state moves away from it. There is inherent uncertainty in the response data that is not measurement error but is related to the observability of the initial conditions.}, language = {en} } @article{LindenmaierZeheDittfurthetal.2005, author = {Lindenmaier, Falk and Zehe, Erwin and Dittfurth, A. and Ihringer, J{\"u}rgen}, title = {Process identification at a slow-moving landslide in the Vorarlberg Alps}, year = {2005}, abstract = {A fine-grained slope that exhibits slow movement rates was investigated to understand how geohydrological processes contribute to a consecutive development of mass movements in the Vorarlberg Alps, Austria. For that purpose intensive hydrometeorological, hydrogeological and geotechnical observations as well as surveying of surface movement rates were conducted during 1998-2001. Subsurface water dynamics at the creeping slope turned out to be dominated by a three-dimensional pressure system. The pressure reaction is triggered by fast infiltration of surface water and subsequent lateral water flow in the south-western part of the hillslope. The related pressure signal was shown to propagate further downhill, causing fast reactions of the piezometric head at 5.5 m depth on a daily time scale. The observed pressure reactions might belong to a temporary hillslope water body that extends further downhill. The related buoyancy forces could be one of the driving forces for the mass movement. A physically based hydrological model was adopted to model simultaneously surface and subsurface water dynamics including evapotranspiration and runoff production. It was possible to reproduce surface runoff and observed pressure reactions in principle. However, as soil hydraulic functions were only estimated on pedotransfer functions, a quantitative comparison between observed and simulated subsurface dynamics is not feasible. Nevertheless, the results suggest that it is possible to reconstruct important spatial structures based on sparse observations in the field which allow reasonable simulations with a physically based hydrological model. Copyright (c) 2005 John Wiley \& Sons, Ltd}, language = {en} } @article{WienhoeferLindenmaierZehe2009, author = {Wienh{\"o}fer, Jan and Lindenmaier, Falk and Zehe, Erwin}, title = {Temporal variability of a slow-moving landslide : the Heum{\"o}ser Hang case study in Vorarlberg, Austria}, isbn = {2-9518317-1-4}, year = {2009}, language = {en} } @article{LindenmaierZeheIhringer2004, author = {Lindenmaier, Falk and Zehe, Erwin and Ihringer, J{\"u}rgen}, title = {The role of detailed hydrological investigation for the identification of dominating structures and processes which lead to mass movement in mountainous regions}, isbn = {3-8325-0585-7}, year = {2004}, language = {en} }