@article{SpijkermanLukasWacker2017, author = {Spijkerman, Elly and Lukas, Marcus and Wacker, Alexander}, title = {Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility}, series = {Phytochemistry : an international journal of plant biochemistry}, volume = {144}, journal = {Phytochemistry : an international journal of plant biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2017.08.018}, pages = {43 -- 51}, year = {2017}, abstract = {Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes.}, language = {en} } @article{SpijkermanWacker2011, author = {Spijkerman, Elly and Wacker, Alexander}, title = {Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga}, series = {Extremophiles : life under extreme conditions}, volume = {15}, journal = {Extremophiles : life under extreme conditions}, number = {5}, publisher = {Springer}, address = {Tokyo}, issn = {1431-0651}, doi = {10.1007/s00792-011-0390-3}, pages = {597 -- 609}, year = {2011}, abstract = {The extremophilic microalga Chlamydomonas acidophila inhabits very acidic waters (pH 2-3.5), where its growth is often limited by phosphorus (P) or colimited by P and inorganic carbon (CO(2)). Because this alga is a major food source for predators in acidic habitats, we studied its fatty acid content, which reflects their quality as food, grown under a combination of P-limited and different carbon conditions (either mixotrophically with light + glucose or at high or low CO(2), both without glucose). The fatty acid composition largely depended on the cellular P content: stringent P-limited cells had a higher total fatty acid concentration and had a lower percentage of polyunsaturated fatty acids. An additional limitation for CO(2) inhibited this decrease, especially reflected in enhanced concentrations of 18:3(9,12,15) and 16:4(3,7,10,13), resulting in cells relatively rich in polyunsaturated fatty acids under colimiting growth conditions. The percentage of polyunsaturated to total fatty acid content was positively related with maximum photosynthesis under all conditions applied. The two factors, P and CO(2), thus interact in their effect on the fatty acid composition in C. acidophila, and colimited cells P-limited algae can be considered a superior food source for herbivores because of the high total fatty acid content and relative richness in polyunsaturated fatty acids.}, language = {en} } @article{WeisseBerendonkKamjunkeetal.2011, author = {Weisse, Thomas and Berendonk, Thomas U. and Kamjunke, Norbert and Moser, Michael and Scheffel, U. and Stadler, P. and Weithoff, Guntram}, title = {Significant habitat effects influence protist fitness evidence for local adaptation from acidic mining lakes}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {2}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {12}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES11-00157.1}, pages = {14}, year = {2011}, abstract = {It is currently controversially discussed if the same freshwater microorganisms occur worldwide wherever their required habitats are realized, i.e., without any adaptation to local conditions below the species level. We performed laboratory experiments with flagellates and ciliates from three acidic mining lakes (AML, pH similar to 2.7) to investigate if similar habitats may affect similar organisms differently. Such man-made lakes provide suitable ecosystem models to test for the significance of strong habitat selection. To this end, we analyzed the growth response of three protist taxa (three strains of the phytoflagellate Chlamydomonas acidophila, two isolates of the phytoflagellate Ochromonas and two species of the ciliate genus Oxytricha) by exposing them to lake water of their origin and from the two other AML in a cross-factorial design. Population growth rates were measured as a proxy for their fitness. Results revealed significant effects of strain, lake (= habitat), and strain X habitat interaction. In the environmentally most adverse AML, all three protist taxa were locally adapted. In conclusion, our study demonstrates that (1) the same habitat may affect strains of the same species differently and that (2) similar habitats may harbor ecophysiologically different strains or species. These results contradict the 'everything is everywhere' paradigm.}, language = {en} }