@article{RachEngelsKahmenetal.2017, author = {Rach, Oliver and Engels, S. and Kahmen, A. and Brauer, Achim and Martin-Puertas, C. and van Geel, B. and Sachse, Dirk}, title = {Hydrological and ecological changes in western Europe between 3200 and 2000 years BP derived from lipid biomarker delta D values in lake Meerfelder Maar sediments}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {172}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.07.019}, pages = {44 -- 54}, year = {2017}, abstract = {One of the most significant Late Holocene climate shifts occurred around 2800 years ago, when cooler and wetter climate conditions established in western Europe. This shift coincided with an abrupt change in regional atmospheric circulation between 2760 and 2560 cal years BP, which has been linked to a grand solar minimum with the same duration (the Homeric Minimum). We investigated the temporal sequence of hydroclimatic and vegetation changes across this interval of climatic change (Homeric climate oscillation) by using lipid biomarker stable hydrogen isotope ratios (ED values) and pollen assemblages from the annually-laminated sediment record from lake Meerfelder Maar (Germany). Over the investigated interval (3200-2000 varve years BP), terrestrial lipid biomarker ED showed a gradual trend to more negative values, consistent with the western Europe long-term climate trend of the Late Holocene. At ca. 2640 varve years BP we identified a strong increase in aquatic plants and algal remains, indicating a rapid change in the aquatic ecosystem superimposed on this long-term trend. Interestingly, this aquatic ecosystem change was accompanied by large changes in ED values of aquatic lipid biomarkers, such as nC(21) and nC(23) (by between 22 and 30\%(0)). As these variations cannot solely be explained by hydroclimate changes, we suggest that these changes in the Wag value were influenced by changes in n-alkane source organisms. Our results illustrate that if ubiquitous aquatic lipid biomarkers are derived from a limited pool of organisms, changes in lake ecology can be a driving factor for variations on sedimentary lipid MN values, which then could be easily misinterpreted in terms of hydro climatic changes. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhilichRudayaKrivonogovetal.2017, author = {Zhilich, Snezhana and Rudaya, Natalia and Krivonogov, Sergei and Nazarova, Larisa B. and Pozdnyakov, Dmitry}, title = {Environmental dynamics of the Baraba forest-steppe (Siberia) over the last 8000 years and their impact on the types of economic life of the population}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {163}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.03.022}, pages = {152 -- 161}, year = {2017}, abstract = {This article offers a reconstruction of the vegetation and climate of the south-western Siberian Baraba forest-steppe area during the last ca. 8000 years. The analysis of palynological data from the sediment core of Lake Bolshie Toroki using quantitative methods has made it possible to reconstruct changes of the dominant types of vegetation and mean July air temperatures. Coniferous forests grew in the vicinity of the lake, and mean July air temperatures were similar to present-day ones between 7.9 and 7.0 kyr BP. The warmest and driest climate occurred at 7.0-5.0 kyr BP. At that time, the region had open steppe landscapes; birch groves began to spread. A cooling trend is seen after 5.5 kyr BP, when forest-steppe began to emerge. Steppe communities started to dominate again after 1.5 kyr BP. Mean July air temperatures lower than now are reconstructed for the period of 1.9-1 kyr BP, and then the temperatures became similar to present-day ones. Comparing the archaeological data on the types of economy of the population which inhabited the Baraba forest-steppe with the data on changes in the natural environment revealed a connection between the gradual transition from hunting and fishing to livestock breeding and the development of forest-steppe landscapes with a decrease in the area covered by forests. The development of the forest-steppe as an ecotonic landscape starting around 5 kyr BP might have contributed to the coexistence of several archaeological cultures with different types of economy on the same territory. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }