@article{RieboldRussowSchlegeletal.2020, author = {Riebold, Diana and Russow, Kati and Schlegel, Mathias and Wollny, Theres and Thiel, Joerg and Freise, Jona and Hueppop, Ommo and Eccard, Jana and Plenge-Boenig, Anita and Loebermann, Micha and Ulrich, Rainer G{\"u}nter and Klammt, Sebastian and Mettenleiter, Thomas Christoph and Reisinger, Emil Christian}, title = {Occurrence of gastrointestinal parasites in small mammals from Germany}, series = {Vector borne and zoonotic diseases}, volume = {20}, journal = {Vector borne and zoonotic diseases}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1530-3667}, doi = {10.1089/vbz.2019.2457}, pages = {125 -- 133}, year = {2020}, abstract = {An increase in zoonotic infections in humans in recent years has led to a high level of public interest. However, the extent of infestation of free-living small mammals with pathogens and especially parasites is not well understood. This pilot study was carried out within the framework of the "Rodent-borne pathogens" network to identify zoonotic parasites in small mammals in Germany. From 2008 to 2009, 111 small mammals of 8 rodent and 5 insectivore species were collected. Feces and intestine samples from every mammal were examined microscopically for the presence of intestinal parasites by using Telemann concentration for worm eggs, Kinyoun staining for coccidia, and Heidenhain staining for other protozoa. Adult helminths were additionally stained with carmine acid for species determination. Eleven different helminth species, five coccidians, and three other protozoa species were detected. Simultaneous infection of one host by different helminths was common. Hymenolepis spp. (20.7\%) were the most common zoonotic helminths in the investigated hosts. Coccidia, including Eimeria spp. (30.6\%), Cryptosporidium spp. (17.1\%), and Sarcocystis spp. (17.1\%), were present in 40.5\% of the feces samples of small mammals. Protozoa, such as Giardia spp. and amoebae, were rarely detected, most likely because of the repeated freeze-thawing of the samples during preparation. The zoonotic pathogens detected in this pilot study may be potentially transmitted to humans by drinking water, smear infection, and airborne transmission.}, language = {en} } @article{ReilBinderFreiseetal.2018, author = {Reil, Daniela and Binder, Florian and Freise, Jona and Imholt, Christian and Beyrers, Konrad and Jacob, Jens and Kr{\"u}ger, Detlev H. and Hofmann, J{\"o}rg and Dreesman, Johannes and Ulrich, Rainer G{\"u}nter}, title = {Hantaviren in Deutschland}, series = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, volume = {131}, journal = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, number = {11-12}, publisher = {Schl{\"u}tersche Verlagsgesellschaft mbH \& Co. KG.}, address = {Hannover}, issn = {0005-9366}, doi = {10.2376/0005-9366-18003}, pages = {453 -- 464}, year = {2018}, abstract = {Hantaviruses are small mammal-associated pathogens that are found in rodents but also in shrews, moles and bats. Aim of this manuscript is to give a current overview of the epidemiology and ecology of hantaviruses in Germany and to discuss respective models for the prediction of virus outbreaks. In Germany the majority of human disease cases are caused by the Puumala virus (PUUV), transmitted by the bank vole (Myodes glareolus). PUUV is associated with the Western evolutionary lineage of the bank vole and is not present in the eastern and northern parts of Germany. A second human pathogenic hantavirus is the Dobrava-Belgrade virus (DOBV), genotype Kurkino; its reservoir host, the striped field mouse (Apodemus agrarius), is mostly occurring in the eastern part of Germany. A PUUV-related hantavirus is the rarely pathogenic Tula virus (TULV), that is associated with the common vole (Microtus arvalis). In addition, Seewis virus, Asikkala virus, and Bruges virus are shrew- and mole-associated hantaviruses with still unknown pathogenicity in humans. Human disease cases are associated with the different hantaviruses according to their regional distribution. The viruses can cause mild to severe but also subclinical courses of the respective disease. The number of human PUUV disease cases in 2007, 2010, 2012, 2015 and 2017 correlates with the occurrence of high levels of seed production of beech trees ("beech mast") in the preceding year. Models based on weather parameters for the prediction of PUUV disease clusters as developed in recent years need further validation and optimisation. in addition to the abundance of infected reservoir rodents, the exposure behaviour of humans affects the risk of human infection. The application of robust forecast models can assist the public health service to develop and communicate spatially and temporally targeted information. Thus, further recommendations to mitigate infection risk for the public may be provided.}, language = {de} }