@phdthesis{Imranulhaq2008, author = {Imran ul-haq, Muhammad}, title = {Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO₂)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19868}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {For the first time stabilizer-free vinylidene fluoride (VDF) polymerizations were carried out in homogeneous phase with supercritical CO₂. Polymerizations were carried out at 140°C, 1500 bar and were initiated with di-tert-butyl peroxide (DTBP). In-line FT-NIR (Fourier Transform- Near Infrared) spectroscopy showed that complete monomer conversion may be obtained. Molecular weights were determined via size-exclusion chromatography (SEC) and polymer end group analysis by 1H-NMR spectroscopy. The number average molecular weights were below 104 g∙mol-1 and polydispersities ranged from 3.1 to 5.7 depending on DTBP and VDF concentration. To allow for isothermal reactions high CO₂ contents ranging from 61 to 83 wt.\% were used. The high-temperature, high-pressure conditions were required for homogeneous phase polymerization. These conditions did not alter the amount of defects in VDF chaining. Scanning electron microscopy (SEM) indicated that regular stack-type particles were obtained upon expansion of the homogeneous polymerization mixture. To reduce the required amount of initiator, further VDF polymerizations using chain transfer agents (CTAs) to control molecular weights were carried out in homogeneous phase with supercritical carbon dioxide (scCO₂) at 120 °C and 1500 bar. Using perfluorinated hexyl iodide as CTA, polymers of low polydispersity ranging from 1.5 to 1.2 at the highest iodide concentration of 0.25 mol·L-1 were obtained. Electrospray ionization- mass spectroscopy (ESI-MS) indicates the absence of initiator derived end groups, supporting livingness of the system. The "livingness" is based on the labile C-I bond. However, due to the weakness of the C-I bond perfluorinated hexyl iodide also contributes to initiation. To allow for kinetic analyses of VDF polymerizations the CTA should not contribute to initiation. Therefore, additional CTAs were applied: BrCCl3, C6F13Br and C6F13H. It was found that C6F13H does not contribute to initiation. At 120°C and 1500 bar kp/kt0.5~ 0.64 (L·mol-1·s-1)0.5 was derived. The chain transfer constant (CT) at 120°C has been determined to be 8·10-1, 9·10-2 and 2·10-4 for C6F13I, C6F13Br and C6F13H, respectively. These CT values are associated with the bond energy of the C-X bond. Moreover, the labile C-I bond allows for functionalization of the polymer to triazole end groups applying click reactions. After substitution of the iodide end group by an azide group 1,3 dipolar cycloadditions with alkynes yield polymers with 1,2,3 triazole end groups. Using symmetrical alkynes the reactions may be carried out in the absence of any catalyst. This end-functionalized poly (vinylidene fluoride) (PVDF) has higher thermal stability as compared to the normal PVDF. PVDF samples from homogeneous phase polymerizations in supercritical CO₂ and subsequent expansion to ambient conditions were analyzed with respect to polymer end groups, crystallinity, type of polymorphs and morphology. Upon expansion the polymer was obtained as white powder. Scanning electron microscopy (SEM) showed that DTBP derived polymer end groups led to stack-type particles whereas sponge- or rose-type particles were obtained in case of CTA fragments as end groups. Fourier-Transform Infrared spectroscopy and wide angle X-ray diffraction indicated that the type of polymorph, α or β crystal phase was significantly affected by the type of end group. The content of β-phase material, which is responsible for piezoelectricity of PVDF, is the highest for polymer with DTBP-derived end groups. In addition, the crystallinity of the material, as determined via differential scanning calorimetry is affected by the end groups and polymer molecular weights. For example, crystallinity ranges from around 26 \% for DTBP-derived end groups to a maximum of 62 \% for end groups originating from perfluorinated hexyl iodide for polymers with Mn ~2200 g·mol-1. Expansion of the homogeneous polymerization mixture results in particle formation by a non-optimized RESS (Rapid Expansion from Supercritical Solution) process. Thus, it was tested how polymer end groups affect the particles size distribution obtained from RESS process under controlled conditions (T = 50°C and P = 200 bar). In all RESS experiments, small primary PVDF with diameters less than 100 nm without the use of liquid solvents, surfactants, or other additives were produced. A strong correlation between particle size and particle size distribution with polymer end groups and molecular weight of the original material was observed. The smallest particles were found for RESS of PVDF with Mn~ 4000 g·mol-1 and PFHI (C6F13I) - derived end groups.}, language = {en} } @article{ShainyanTolstikovaSchilde2012, author = {Shainyan, Bagrat A. and Tolstikova, Ljudmila L. and Schilde, Uwe}, title = {Simple methods for the preparation of N-triflyl guanidines and the structure of compounds with the CF3SO2N=C-N fragment}, series = {Journal of fluorine chemistry}, volume = {135}, journal = {Journal of fluorine chemistry}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0022-1139}, doi = {10.1016/j.fluchem.2011.12.004}, pages = {261 -- 264}, year = {2012}, abstract = {Two novel and simple approaches to N-triflyl guanidines are elaborated. Owing to very strong conjugation the formally double C=N bond of TIN=C(NHR)(2) is longer than the formally single N-C bonds. Energetic effect of the triflylgroup on the conjugation in the N-C=N moiety is estimated to be >= 150 kcal/mol.}, language = {en} } @misc{Laschewsky2012, author = {Laschewsky, Andr{\´e}}, title = {Recent trends in the synthesis of polyelectrolytes}, series = {Current opinion in colloid \& interface science : current chemistry}, volume = {17}, journal = {Current opinion in colloid \& interface science : current chemistry}, number = {2}, publisher = {Elsevier}, address = {London}, issn = {1359-0294}, doi = {10.1016/j.cocis.2011.08.001}, pages = {56 -- 63}, year = {2012}, abstract = {Recent developments in the synthesis of polyelectrolytes are highlighted, with respect to the nature of the ionic groups, the polymer backbones, synthetic methods, and additional functionality given to the polyelectrolytes. In fact, the synthesis of new polyelectrolytes is mostly driven by material aspects, currently. The article pays particular attention to strong polyelectrolytes, and the new methods of controlled polymerization. These methods and the so-called click reactions have enabled novel designs of polyelectrolytes. Nevertheless, the polymerization of unprotected ionic monomers is still challenging and limits the synthetic possibilities. The structural aspects are complemented by considerations with respect to the aspired uses of the new polyelectrolytes.}, language = {en} } @article{SchwarzeTraegerKellingetal.2013, author = {Schwarze, Thomas and Traeger, Juliane and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Macrocyclic dithiomaleonitriles for an efficient PdCl2 coordination}, series = {Inorganica chimica acta : the international inorganic chemistry journal}, volume = {408}, journal = {Inorganica chimica acta : the international inorganic chemistry journal}, number = {2}, publisher = {Elsevier}, address = {Lausanne}, issn = {0020-1693}, doi = {10.1016/j.ica.2013.08.020}, pages = {53 -- 58}, year = {2013}, abstract = {We have synthesized a set of new unsaturated macrocyclic dithioethers with an increasing number of flexible methylene units 1-7 (Scheme 2) to investigate the correlation between the ring size of these ligands, the chelation effect and the consequences for an efficient PdCl2 coordination. The dithioethers 1-7 and the complex [PdCl2(4)]center dot CHCl3 were characterized by X-ray diffraction analysis. The crystal structures of 1-7 show that 2-7 are better preorganized chelating ligands for an exocyclic PdCl2 coordination than 1. The chelation effect of 1-7, the orientation of the sulfur atoms and the S center dot center dot center dot S donor distances, are influenced by the flexibility of the methylene units. In this series the unsaturated macrocyclic ligands 5 and 6 are the best chelating ligands for an efficient PdCl2 coordination. Comparative solvent extraction experiments with mn-12S(2)O(2) (mn = maleonitrile) reveal that the low interface activity of the new ligands reduces the extraction rate. However, a comparison with open-chain dithiomaleonitriles shows the impact of the macrocyclic effect of 4 and 5 on the extraction yield.}, language = {en} } @phdthesis{BivigouKoumba2009, author = {Bivigou Koumba, Achille Mayelle}, title = {Design, Synthesis and Characterisation of Amphiphilic Symmetrical triblock copolymers by the RAFT process : their self-organisation in dilute and concentrated aqueous solutions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39549}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {This work presents the synthesis and the self-assembly of symmetrical amphiphilic ABA and BAB triblock copolymers in dilute, semi-concentrated and highly concentrated aqueous solution. A series of new bifunctional bistrithiocarbonates as RAFT agents was used to synthesise these triblock copolymers, which are characterised by a long hydrophilic middle block and relatively small, but strongly hydrophobic end blocks. As hydrophilic A blocks, poly(N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA) were employed, while as hydrophobic B blocks, poly(4-tert-butyl styrene), polystyrene, poly(3,5-dibromo benzyl acrylate), poly(2-ethylhexyl acrylate), and poly(octadecyl acrylate) were explored as building blocks with different hydrophobicities and glass transition temperatures. The five bifunctional trithiocarbonates synthesised belong to two classes: the first are RAFT agents, which position the active group of the growing polymer chain at the outer ends of the polymer (Z-C(=S)-S-R-S-C(=S)-Z, type I). The second class places the active groups in the middle of the growing polymer chain (R-S-C(=S)-Z-C(=S)-S-R, type II). These RAFT agents enable the straightforward synthesis of amphiphilic triblock copolymers in only two steps, allowing to vary the nature of the hydrophobic blocks as well as the length of the hydrophobic and hydrophilic blocks broadly with good molar mass control and narrow polydispersities. Specific side reactions were observed among some RAFT agents including the elimination of ethylenetrithiocarbonate in the early stage of the polymerisation of styrene mediated by certain agents of the type II, while the use of the RAFT agents of type I resulted in retardation of the chain extension of PNIPAM with styrene. These results underline the need of a careful choice of RAFT agents for a given task. The various copolymers self-assemble in dilute and semi-concentrated aqueous solution into small flower-like micelles. No indication for the formation of micellar clusters was found, while only at high concentration, physical hydrogels are formed. The reversible thermoresponsive behaviour of the ABA and BAB type copolymer solutions in water with A made of PNIPAM was examined by turbidimetry and dynamic light scattering (DLS). The cloud point of the copolymers was nearly identical to the cloud point of the homopolymer and varied between 28-32 °C with concentrations from 0.01 to 50 wt\%. This is attributed to the formation of micelles where the hydrophobic blocks are shielded from a direct contact with water, so that the hydrophobic interactions of the copolymers are nearly the same as for pure PNIPAM. Dynamic light scattering measurements showed the presence of small micelles at ambient temperature. The aggregate size dramatically increased above the cloud point, indicating a change of aggregate morphology into clusters due to the thermosensitivity of the PNIPAM block. The rheological behaviour of the amphiphilic BAB triblock copolymers demonstrated the formation of hydrogels at high concentrations, typically above 30-35 wt\%. The minimum concentration to induce hydrogels decreased with the increasing glass transition temperatures and increasing length of the end blocks. The weak tendency to form hydrogels was attributed to a small share of bridged micelles only, due to the strong segregation regime occurring. In order to learn about the role of the nature of the thermoresponsive block for the aggregation, a new BAB triblock copolymer consisting of short polystyrene end blocks and PMDEGA as stimuli-responsive middle block was prepared and investigated. Contrary to PNIPAM, dilute aqueous solutions of PMDEGA and of its block copolymers showed reversible phase transition temperatures characterised by a strong dependence on the polymer composition. Moreover, the PMDEGA block copolymer allowed the formation of physical hydrogels at lower concentration, i.e. from 20 wt\%. This result suggests that PMDEGA has a higher degree of water-swellability than PNIPAM.}, language = {en} } @article{ChmielewskiBaldermannGoetzetal.2018, author = {Chmielewski, Frank M. and Baldermann, Susanne and G{\"o}tz, Klaus Peter and Homann, Thomas and G{\"o}deke, Kristin and Schumacher, Fabian and Huschek, Gerd and Rawel, Harshadrai Manilal}, title = {Abscisic acid related metabolites in sweet cherry buds (Prunus avium L.)}, series = {Journal of Horticulture}, volume = {5}, journal = {Journal of Horticulture}, number = {1}, issn = {2376-0354}, doi = {10.4172/2376-0354.1000221}, pages = {221}, year = {2018}, abstract = {As our climate changes, plant mechanisms involved for dormancy release become increasingly important for commercial orchards. It is generally believed that abscisic acid (ABA) is a key hormone that responds to various environmental stresses which affects bud dormancy. For this reason, a multi-year study was initiated to obtain data on plant metabolites during winter rest and ontogenetic development in sweet cherry buds (Prunus avium L.). In this paper, we report on metabolites involved in ABA synthesis and catabolism and its effect on bud dormancy in the years 2014/15-2016/17. In previous work, the timings of the different phases of para-, endo-, ecodormancy and ontogenetic development for cherry flower buds of the cultivar 'Summit' were determined, based on classical climate chamber experiments and changes in the bud's water content. Based on these time phases, we focused now on the different aspects of the ABA-metabolism. The results show that there is a continual synthesis of ABA about 5 weeks before leaf fall, and a degradation of ABA during ecodormancy and bud development until the phenological stage 'open cluster'. This is confirmed by relating the ABA content to that of the total precursor carotenoids, neoxanthin and violaxanthin. The tentative monitoring of individual intermediate metabolites revealed that dihydroxyphaseic acid is the most abundant catabolite of ABA and ABA glucosyl ester is in terms of mass intensity, the most abundant ABA metabolite observed in this study. The results suggest that the direct route for ABA biosynthesis from farnesyl pyrophosphate may also be relevant in cherry flower buds.}, language = {de} } @article{SperlichKoeckerling2021, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {[Nb6Cl12(CH3OH)4(OCH3)2] ⋅ DABCO ⋅ 1.66 CH2Cl2}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.202100138}, pages = {1759 -- 1763}, year = {2021}, abstract = {An easy-to-do synthesis for the hexanuclear niobium cluster compound [Nb6Cl12(CH3OH)(4)(OCH3)(2)] . DABCO . 1.66 CH2Cl2 has been developed. An one-pot reaction between the cluster precursor [Nb6Cl14(H2O)(4)] . 4H(2)O and methanol with the addition of DABCO leads to the crystallization of the title compound in high yield within a few minutes. The single-crystal X-ray structure of this cluster compound has been determined. Very strong, nearly symmetric intercluster hydrogen bonds Nb-6-MeO...H...OMe-Nb-6 are present between the cluster units. A bridging co-crystalline DABCO molecule is also involved in a three-dimensional hydrogen-bonding network.}, language = {en} }