@misc{BubeckAertsdeMoeletal.2016, author = {Bubeck, Philip and Aerts, Jeroen C. J. H. and de Moel, Hans and Kreibich, Heidi}, title = {Preface}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {609}, issn = {1866-8372}, doi = {10.25932/publishup-41238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412387}, pages = {6}, year = {2016}, abstract = {kein abstract}, language = {en} } @misc{LenkRybskiHeidrichetal.2017, author = {Lenk, Stephan and Rybski, Diego and Heidrich, Oliver and Dawson, Richard J. and Kropp, J{\"u}rgen}, title = {Costs of sea dikes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {638}, issn = {1866-8372}, doi = {10.25932/publishup-41840}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418401}, pages = {765 -- 779}, year = {2017}, abstract = {Failure to consider the costs of adaptation strategies can be seen by decision makers as a barrier to implementing coastal protection measures. In order to validate adaptation strategies to sea-level rise in the form of coastal protection, a consistent and repeatable assessment of the costs is necessary. This paper significantly extends current knowledge on cost estimates by developing - and implementing using real coastal dike data - probabilistic functions of dike costs. Data from Canada and the Netherlands are analysed and related to published studies from the US, UK, and Vietnam in order to provide a reproducible estimate of typical sea dike costs and their uncertainty. We plot the costs divided by dike length as a function of height and test four different regression models. Our analysis shows that a linear function without intercept is sufficient to model the costs, i.e. fixed costs and higher-order contributions such as that due to the volume of core fill material are less significant. We also characterise the spread around the regression models which represents an uncertainty stemming from factors beyond dike length and height. Drawing an analogy with project cost overruns, we employ log-normal distributions and calculate that the range between 3x and x/3 contains 95\% of the data, where x represents the corresponding regression value. We compare our estimates with previously published unit costs for other countries. We note that the unit costs depend not only on the country and land use (urban/non-urban) of the sites where the dikes are being constructed but also on characteristics included in the costs, e.g. property acquisition, utility relocation, and project management. This paper gives decision makers an order of magnitude on the protection costs, which can help to remove potential barriers to develop-ing adaptation strategies. Although the focus of this research is sea dikes, our approach is applicable and transferable to other adaptation measures.}, language = {en} } @misc{PrahlRybskiBurghoffetal.2015, author = {Prahl, Boris F. and Rybski, Diego and Burghoff, Olaf and Kropp, J{\"u}rgen}, title = {Comparison of storm damage functions and their performance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {492}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408119}, pages = {20}, year = {2015}, abstract = {Winter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties for both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic wind-damage relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two sources of wind gust data, direct observations by the German Weather Service and ERA-Interim reanalysis data. While the choice of gust data has little impact on the evaluation of German storm loss, spatially resolved coefficients of variation reveal dependence between model and data choice. The comparison shows that the probabilistic models by Heneka et al. (2006) and Prahl et al. (2012) both provide accurate loss predictions for moderate to extreme losses, with generally small coefficients of variation. We favour the latter model in terms of model applicability. Application of the versatile deterministic model by Klawa and Ulbrich (2003) should be restricted to extreme loss, for which it shows the least bias and errors comparable to the probabilistic model by Prahl et al. (2012).}, language = {en} }