@article{VenailGrossOakleyetal.2015, author = {Venail, Patrick and Gross, Kevin and Oakley, Todd H. and Narwani, Anita and Allan, Eric and Flombaum, Pedro and Isbell, Forest and Joshi, Jasmin Radha and Reich, Peter B. and Tilman, David and van Ruijven, Jasper and Cardinale, Bradley J.}, title = {Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {29}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0269-8463}, doi = {10.1111/1365-2435.12432}, pages = {615 -- 626}, year = {2015}, abstract = {Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR.Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.}, language = {en} } @article{StantonBooneSotoShoenderetal.2017, author = {Stanton, Richard A. and Boone, Wesley W. and Soto-Shoender, Jose and Fletcher, Robert J. and Blaum, Niels and McCleery, Robert A.}, title = {Shrub encroachment and vertebrate diversity}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {27}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.12675}, pages = {368 -- 379}, year = {2017}, abstract = {Aim: Across the planet, grass-dominated biomes are experiencing shrub encroachment driven by atmospheric CO2 enrichment and land-use change. By altering resource structure and availability, shrub encroachment may have important impacts on vertebrate communities. We sought to determine the magnitude and variability of these effects across climatic gradients, continents, and taxa, and to learn whether shrub thinning restores the structure of vertebrate communities. Location: Worldwide. Time period: Contemporary. Major taxa studied: Terrestrial vertebrates. Methods: We estimated relationships between percentage shrub cover and the structure of terrestrial vertebrate communities (species richness, Shannon diversity and community abundance) in experimentally thinned and unmanipulated shrub-encroached grass-dominated biomes using systematic review and meta-analyses of 43 studies published from 1978 to 2016. We modelled the effects of continent, biome, mean annual precipitation, net primary productivity and the normalized difference vegetation index (NDVI) on the relationship between shrub cover and vertebrate community structure. Results: Species richness, Shannon diversity and total abundance had no consistent relationship with shrub encroachment and experimental thinning did not reverse encroachment effects on vertebrate communities. However, some effects of shrub encroachment on vertebrate communities differed with net primary productivity, amongst vertebrate groups, and across continents. Encroachment had negative effects on vertebrate diversity at low net primary productivity. Mammalian and herpetofaunal diversity decreased with shrub encroachment. Shrub encroachment also had negative effects on species richness and total abundance in Africa but positive effects in North America. Main conclusions: Biodiversity conservation and mitigation efforts responding to shrub encroachment should focus on low-productivity locations, on mammals and herpetofauna, and in Africa. However, targeted research in neglected regions such as central Asia and India will be needed to fill important gaps in our knowledge of shrub encroachment effects on vertebrates. Additionally, our findings provide an impetus for determining the mechanisms associated with changes in vertebrate diversity and abundance in shrub-encroached grass-dominated biomes.}, language = {en} } @article{RottstockJoshiKummeretal.2014, author = {Rottstock, Tanja and Joshi, Jasmin Radha and Kummer, Volker and Fischer, Markus}, title = {Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {7}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {1907 -- 1917}, year = {2014}, abstract = {Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.}, language = {en} }