@article{NeelmeijerMotaghBookhagen2017, author = {Neelmeijer, Julia and Motagh, Mandi and Bookhagen, Bodo}, title = {High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia}, series = {ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing}, volume = {130}, journal = {ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-2716}, doi = {10.1016/j.isprsjprs.2017.05.011}, pages = {108 -- 121}, year = {2017}, abstract = {This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{MorishitaLazeckyWrightetal.2020, author = {Morishita, Yu and Lazecky, Milan and Wright, Tim J. and Weiss, Jonathan R. and Elliott, John R. and Hooper, Andy}, title = {LiCSBAS}, series = {Remote sensing}, volume = {12}, journal = {Remote sensing}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs12030424}, pages = {29}, year = {2020}, abstract = {For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (similar to km) relative displacements with an accuracy of <1 cm/epoch and similar to 2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit.}, language = {en} } @article{LoiblBookhagenValadeetal.2019, author = {Loibl, David and Bookhagen, Bodo and Valade, Sebastien and Schneider, Christoph}, title = {OSARIS, the "Open Source SAR Investigation System" for Automatized Parallel InSAR Processing of Sentinel-1 Time Series Data With Special Emphasis on Cryosphere Applications}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00172}, pages = {20}, year = {2019}, abstract = {With the advent of the two Sentinel-1 (S1) satellites, Synthetic Aperture Radar (SAR) data with high temporal and spatial resolution are freely available. This provides a promising framework to facilitate detailed investigations of surface instabilities and movements on large scales with high temporal resolution, but also poses substantial processing challenges because of storage and computation requirements. Methods are needed to efficiently detect short term changes in dynamic environments. Approaches considering pair-wise processing of a series of consecutive scenes to retain maximum temporal resolution in conjunction with time series analyses are required. Here we present OSARIS, the "Open Source SAR Investigation System," as a framework to process large stacks of S1 data on high-performance computing clusters. Based on Generic Mapping Tools SAR, shell scripts, and the workload manager Slurm, OSARIS provides an open and modular framework combining parallelization of high-performance C programs, flexible processing schemes, convenient configuration, and generation of geocoded stacks of analysis-ready base data, including amplitude, phase, coherence, and unwrapped interferograms. Time series analyses can be conducted by applying automated modules to the data stacks. The capabilities of OSARIS are demonstrated in a case study from the northwestern Tien Shan, Central Asia. After merging of slices, a total of 80 scene pairs were processed from 174 total input scenes. The coherence time series exhibits pronounced seasonal variability, with relatively high coherence values prevailing during the summer months in the nival zone. As an example of a time series analysis module, we present OSARIS' "Unstable Coherence Metric" which identifies pixels affected by significant drops from high to low coherence values. Measurements of motion provided by LOSD measurements require careful evaluation because interferometric phase unwrapping is prone to errors. Here, OSARIS provides a series of modules to detect and mask unwrapping errors, correct for atmospheric disturbances, and remove large-scale trends. Wall clock processing time for the case study (area ~9,000 km2) was ~12 h 4 min on a machine with 400 cores and 2 TB RAM. In total, ~12 d 10 h 44 min (~96\%) were saved through parallelization. A comparison of selected OSARIS datasets to results from two state-of-the-art SAR processing suites, ISCE and SNAP, shows that OSARIS provides products of competitive quality despite its high level of automatization. OSARIS thus facilitates efficient S1-based region-wide investigations of surface movement events over multiple years.}, language = {en} } @article{LiuRuchVasyuraBathkeetal.2019, author = {Liu, Yuan-Kai and Ruch, Jo{\"e}l and Vasyura-Bathke, Hannes and J{\´o}nsson, Sigurj{\´o}n}, title = {Influence of ring faulting in localizing surface deformation at subsiding calderas}, series = {Earth \& planetary science letters}, volume = {526}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.115784}, pages = {12}, year = {2019}, abstract = {Caldera unrest can lead to major volcanic eruptions. Analysis of subtle subsidence or inflation at calderas helps understanding of their subsurface volcanic processes and related hazards. Several subsiding calderas have shown similar patterns of ground deformation composed of broad subsidence affecting the entire volcanic edifice and stronger localized subsidence focused inside the caldera. Physical models of internal deformation sources used to explain these observations typically consist of two magma reservoirs at different depths in an elastic half-space. However, such models ignore important subsurface structures, such as ring faults, that may influence the deformation pattern. Here we use both analog subsidence experiments and boundary element modeling to study the three-dimensional geometry and kinematics of caldera subsidence processes, evolving from an initial downsag to a later collapse stage. We propose that broad subsidence is mainly caused by volume decrease within a single magma reservoir, whereas buried ring-fault activity localizes the deformation within the caldera. Omitting ring faulting in physical models of subsiding calderas and using multiple point/sill-like sources instead can result in erroneous estimates of magma reservoir depths and volume changes. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{BufeBekaertHussainetal.2017, author = {Bufe, Aaron and Bekaert, David P. S. and Hussain, Ekbal and Bookhagen, Bodo and Burbank, Douglas W. and Jobe, Jessica Ann Thompson and Chen, Jie and Li, Tao and Liu, Langtao and Gan, Weijun}, title = {Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073627}, pages = {10977 -- 10987}, year = {2017}, abstract = {Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years).}, language = {en} }