@article{SinclairBussideVilliersetal.2016, author = {Sinclair, Nathalie and Bussi, Maria G. Bartolini and de Villiers, Michael and Jones, Keith and Kortenkamp, Ulrich and Leung, Allen and Owens, Kay}, title = {Recent research on geometry education: an ICME-13 survey team report}, series = {ZDM : The International Journal on Mathematics Education}, volume = {48}, journal = {ZDM : The International Journal on Mathematics Education}, publisher = {Springer}, address = {Heidelberg}, issn = {1863-9690}, doi = {10.1007/s11858-016-0796-6}, pages = {691 -- 719}, year = {2016}, abstract = {This survey on the theme of Geometry Education (including new technologies) focuses chiefly on the time span since 2008. Based on our review of the research literature published during this time span (in refereed journal articles, conference proceedings and edited books), we have jointly identified seven major threads of contributions that span from the early years of learning (pre-school and primary school) through to post-compulsory education and to the issue of mathematics teacher education for geometry. These threads are as follows: developments and trends in the use of theories; advances in the understanding of visuo spatial reasoning; the use and role of diagrams and gestures; advances in the understanding of the role of digital technologies; advances in the understanding of the teaching and learning of definitions; advances in the understanding of the teaching and learning of the proving process; and, moving beyond traditional Euclidean approaches. Within each theme, we identify relevant research and also offer commentary on future directions.}, language = {en} } @article{MuellerCarlsohnMuelleretal.2012, author = {M{\"u}ller, Steffen and Carlsohn, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Static and dynamic foot characteristics in children aged 1-13 years a cross-sectional study}, series = {Gait \& posture}, volume = {35}, journal = {Gait \& posture}, number = {3}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2011.10.357}, pages = {389 -- 394}, year = {2012}, abstract = {The aim of this study was to acquire static and dynamic foot geometry and loading in childhood, and to establish data for age groups of a population of 1-13 year old infants and children. A total of 10,382 children were recruited and 7788 children (48\% males and 52\% females) were finally included into the data analysis. For static foot geometry foot length and foot width were quantified in a standing position. Dynamic foot geometry and loading were assessed during walking on a walkway with self selected speed (Novel Emed X, 100 Hz, 4 sensors/cm(2)). Contact area (CA), peak pressure (PP), force time integral (FTI) and the arch index were calculated for the total, fore-, mid- and hindfoot. Results show that most static and dynamic foot characteristics change continuously during growth and maturation. Static foot length and width increased with age from 13.1 +/- 0.8 cm (length) and 5.7 +/- 0.4 cm (width) in the youngest to 24.4 +/- 1.5 cm (length) and 8.9 +/- 0.6 cm (width) in the oldest. A mean walking velocity of 0.94 +/- 0.25 m/s was observed. Arch-index ranged from 0.32 +/- 0.04 [a.u.] in the one-year old to 0.21 +/- 0.13 [a.u.] in the 5-year olds and remains constant afterwards. This study provides data for static and dynamic foot characteristics in children based on a cohort of 7788 subjects. Static and dynamic foot measures change differently during growth and maturation. Dynamic foot measurements provide additional information about the children's foot compared to static measures.}, language = {en} }