@article{BorchardtTrauth2012, author = {Borchardt, Sven and Trauth, Martin H.}, title = {Remotely-sensed evapotranspiration estimates for an improved hydrological modeling of the early holocene mega-lake Suguta, northern Kenya Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {361}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.07.009}, pages = {14 -- 20}, year = {2012}, abstract = {The actual evapotranspiration is an important, but difficult to determine, element in the water balance of lakes and their catchment areas. Reliable data on evapotranspiration are not available for most lake basins for which paleoclimate reconstructions and modeling have been performed, particularly those in remote parts of Africa. We have used thermal infrared multispectral data for 14 ASTER scenes from the TERRA satellite to estimate the actual evapotranspiration in the 12,800 km(2) catchment of the Suguta Valley, northern Kenya Rift Evidence from sediments and paleo-shorelines indicates that, during the African Humid Period (AHP, 14.8 to 5.5 kyrs BP), this valley contained a large lake, 280 m deep and covering similar to 2200 km(2), which has now virtually disappeared. Evapotranspiration estimates for the Suguta Basin were generated using the Surface Energy Balance Algorithm for Land (SEBAL). Climate data required for the model were extracted from a high-resolution gridded dataset obtained from the Climatic Research Unit (East Anglia, UK). Results suggest significant spatial variations in evapotranspiration within the catchment area (ranging from 450 mm/yr in the basin to the north to 2000 mm/yr in more elevated areas) and precipitation that was similar to 20\% higher during the AHP than in recent times. These results are in agreement with other estimates of paleo-precipitation in East Africa. The extreme response of the lake system (similar to 280 m greater water depth than today, and a lake surface area of 2200 km(2)) to only moderately higher precipitation illustrates the possible sensitivity of this area to future climate change.}, language = {en} } @article{BronstertCreutzfeldtGraeffetal.2012, author = {Bronstert, Axel and Creutzfeldt, Benjamin and Gr{\"a}ff, Thomas and Hajnsek, Irena and Heistermann, Maik and Itzerott, Sibylle and Jagdhuber, Thomas and Kneis, David and Lueck, Erika and Reusser, Dominik and Zehe, Erwin}, title = {Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments}, series = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, volume = {60}, journal = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0921-030X}, doi = {10.1007/s11069-011-9874-9}, pages = {879 -- 914}, year = {2012}, abstract = {Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e. g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model.}, language = {en} } @phdthesis{LauerDuenkelberg2023, author = {Lauer-D{\"u}nkelberg, Gregor}, title = {Extensional deformation and landscape evolution of the Central Andean Plateau}, doi = {10.25932/publishup-61759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617593}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 195}, year = {2023}, abstract = {Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths' surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes - tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene - Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision.}, language = {en} } @article{MarkusMorozArnoldetal.2018, author = {Markus, Kathrin and Moroz, Lyuba and Arnold, Gabriele and Henckel, Daniela and Hiesinger, Harald and Rohrbach, Arno and Klemme, Stephan}, title = {Reflectance spectra of synthetic Fe-free ortho- and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces}, series = {Planetary and space science}, volume = {159}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2018.04.006}, pages = {43 -- 55}, year = {2018}, abstract = {Both enstatite spectra are very bright in the VIS and NIR and show almost neutral to slightly bluish spectral slopes with a steep absorption in the UV. Very low iron in the enstatites (below similar to 0.04 wt\% FeO) already results in weak albeit noticeable absorptions in the VNIR between 0.4 and 0.9 mu m. Orthoenstatite and clinoenstatite are not distinguishable based only on their spectra in the VIS and NIR. At the Reststrahlen bands in the MIR a systematic difference in the number and exact position of local minima at similar to 10 mu m between clinoenstatite and orthoenstatite is evident. This can be used to discern between the polymorphs in this wavelength range. Additionally, we can distinguish between Fe-free low- and high-Ca pyroxenes in the MIR.}, language = {en} } @article{OzturkPittoreBehlingetal.2021, author = {Ozturk, Ugur and Pittore, Massimiliano and Behling, Robert and R{\"o}ßner, Sigrid and Andreani, Louis and Korup, Oliver}, title = {How robust are landslide susceptibility estimates?}, series = {Landslides}, volume = {18}, journal = {Landslides}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-510X}, doi = {10.1007/s10346-020-01485-5}, pages = {681 -- 695}, year = {2021}, abstract = {Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression-one of the most widely used susceptibility models-to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by >10\% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change.}, language = {en} } @phdthesis{Scherler2010, author = {Scherler, Dirk}, title = {Climate variability and glacial dynamics in the Himalaya}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49871}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In den Hochgebirgen Asiens bedecken Gletscher eine Fl{\"a}che von ungef{\"a}hr 115,000 km² und ergeben damit, neben Gr{\"o}nland und der Antarktis, eine der gr{\"o}ßten Eisakkumulationen der Erde. Die Sensibilit{\"a}t der Gletscher gegen{\"u}ber Klimaschwankungen macht sie zu wertvollen pal{\"a}oklimatischen Archiven in Hochgebirgen, aber gleichzeitig auch anf{\"a}llig gegen{\"u}ber rezenter und zuk{\"u}nftiger globaler Erw{\"a}rmung. Dies kann vor allem in dicht besiedelten Gebieten S{\"u}d-, Ost- und Zentralasiens zu großen Problem f{\"u}hren, in denen Gletscher- und Schnee-Schmelzw{\"a}sser eine wichtige Ressource f{\"u}r Landwirtschaft und Stromerzeugung darstellen. Eine erfolgreiche Prognose des Gletscherverhaltens in Reaktion auf den Klimawandel und die Minderung der sozio{\"o}konomischen Auswirkungen erfordert fundierte Kenntnisse der klimatischen Steuerungsfaktoren und der Dynamik asiatischer Gletscher. Aufgrund ihrer Abgeschiedenheit und dem erschwerten Zugang gibt es nur wenige glaziologische Gel{\"a}ndestudien, die zudem r{\"a}umlich und zeitlich sehr begrenzt sind. Daher fehlen bisher grundlegende Informationen {\"u}ber die Mehrzahl asiatischer Gletscher. In dieser Arbeit benutze ich verschiedene Methoden, um die Dynamik asiatischer Gletscher auf mehreren Zeitskalen zu untersuchen. Erstens teste ich eine Methode zur pr{\"a}zisen satelliten-gest{\"u}tzten Messung von Gletscheroberfl{\"a}chen-Geschwindigkeiten. Darauf aufbauend habe ich eine umfassende regionale Erhebung der Fliessgeschwindigkeiten und Frontdynamik asiatischer Gletscher f{\"u}r die Jahre 2000 bis 2008 durchgef{\"u}hrt. Der gewonnene Datensatz erlaubt einmalige Einblicke in die topographischen und klimatischen Steuerungsfaktoren der Gletscherfließgeschwindigkeiten in den Gebirgsregionen Hochasiens. Insbesondere dokumentieren die Daten rezent ungleiches Verhalten der Gletscher im Karakorum und im Himalaja, welches ich auf die konkurrierenden klimatischen Einfl{\"u}sse der Westwinddrift im Winter und des Indischen Monsuns im Sommer zur{\"u}ckf{\"u}hre. Zweitens untersuche ich, ob klimatisch bedingte Ost-West Unterschiede im Gletscherverhalten auch auf l{\"a}ngeren Zeitskalen eine Rolle spielen und gegebenenfalls f{\"u}r dokumentierte regional asynchrone Gletschervorst{\"o}ße relevant sind. Dazu habe ich mittels kosmogener Nuklide Oberfl{\"a}chenalter von erratischen Bl{\"o}cken auf Mor{\"a}nen ermittelt und eine glaziale Chronologie f{\"u}r das obere Tons Tal, in den Quellgebieten des Ganges, erstellt. Dieses Gebiet befindet sich in der {\"U}bergangszone von monsunaler zu Westwind beeinflusster Feuchtigkeitszufuhr und ist damit ideal gelegen, um die Auswirkungen dieser beiden atmosph{\"a}rischen Zirkulationssysteme auf Gletschervorst{\"o}ße zu untersuchen. Die ermittelte glaziale Chronologie dokumentiert mehrere Gletscherschwankungen w{\"a}hrend des Endstadiums der letzten Pleistoz{\"a}nen Vereisung und w{\"a}hrend des Holz{\"a}ns. Diese weisen darauf hin, dass Gletscherschwankungen im westlichen Himalaja weitestgehend synchron waren und auf graduelle glaziale-interglaziale Temperaturver{\"a}nderungen, {\"u}berlagert von monsunalen Niederschlagsschwankungen h{\"o}herer Frequenz, zur{\"u}ck zu f{\"u}hren sind. In einem dritten Schritt kombiniere ich Satelliten-Klimadaten mit Eisfluss-Absch{\"a}tzungen und topographischen Analysen, um den Einfluss der Gletscher Hochasiens auf die Reliefentwicklung im Hochgebirge zu untersuchen. Die Ergebnisse dokumentieren ausgepr{\"a}gte meridionale Unterschiede im Grad und im Stil der Vergletscherung und glazialen Erosion in Abh{\"a}ngigkeit von topographischen und klimatischen Faktoren. Gegens{\"a}tzlich zu bisherigen Annahmen deuten die Daten darauf hin, dass das monsunale Klima im zentralen Himalaja die glaziale Erosion schw{\"a}cht und durch den Erhalt einer steilen orographischen Barriere das Tibet Plateau vor lateraler Zerschneidung bewahrt. Die Ergebnisse dieser Arbeit dokumentieren, wie klimatische und topographische Gradienten die Gletscherdynamik in den Hochgebirgen Asiens auf Zeitskalen von 10^0 bis 10^6 Jahren beeinflussen. Die Reaktionszeit der Gletscher auf Klimaver{\"a}nderungen sind eng an Eigenschaften wie Schuttbedeckung und Neigung gekoppelt, welche ihrerseits von den topographischen Verh{\"a}ltnissen bedingt sind. Derartige Einflussfaktoren m{\"u}ssen bei pal{\"a}oklimatischen Rekonstruktion und Vorhersagen {\"u}ber die Entwicklung asiatischer Gletscher ber{\"u}cksichtigt werden. Desweiteren gehen die regionalen topographischen Unterschiede der vergletscherten Gebiete Asiens teilweise auf klimatische Gradienten und den langfristigen Einfluss der Gletscher auf die topographische Entwicklung des Gebirgssystems zur{\"u}ck.}, language = {en} } @article{SoaresPereiraGomesCostaFoersteretal.2019, author = {Soares Pereira, Francisco Jairo and Gomes Costa, Carlos Alexandre and F{\"o}rster, Saskia and Brosinsky, Arlena and de Araujo, Jose Carlos}, title = {Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery}, series = {International journal of applied earth observation and geoinformation}, volume = {79}, journal = {International journal of applied earth observation and geoinformation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0303-2434}, doi = {10.1016/j.jag.2019.02.009}, pages = {153 -- 161}, year = {2019}, abstract = {There is a shortage of sediment-routing monitoring worldwide, despite its relevance to environmental processes. In drylands, where water resources are more vulnerable to the sediment dynamics, this flaw is even more harmful. In the semi-arid Caatinga biome in the North-east of Brazil, rivers are almost all intermittent and hydro-sedimentological monitoring is scarce. In the biome, water supply derives from thousands of surface reservoirs, whose water availability is liable to be reduced by siltation and sediment-related pollution. The goal of this research was to evaluate the potential of multi-temporal high-resolution satellite imagery (RapidEye) to assess the suspended sediment concentration (SSC) in the medium-sized intermittent Jaguaribe River, Brazil, during a 5-year period. We validated 15 one-, two- and three-band indices for SSC estimation based on RapidEye spectral bands deduced in the context of the present investigation and nine indices proposed in the literature for other optical sensors, by comparing them with in-situ concentration data. The in-situ SSC data ranged from 67 mg.L-1 to 230 mg.L-1. We concluded that RapidEye images can assess moderate SSC of intermittent rivers, even when their discharge is low. The RapidEye indices performed better than those from literature. The spectral band that best represented SSC was the near infrared, whose performance improved when associated with the green band. This conclusion agrees with literature findings for diverse sedimentological contexts. The three-band spectral indices performed worse than those with only one or two spectral bands, showing that the use of a third band did not enhance the model ability. Besides, we show that the hydrological characteristics of semi-arid intermittent rivers generate difficulties to monitor SSC using optical satellite remote sensing, such as time-concentrated sediment yield; and its association with recent rainfall events and, therefore, with cloudy sky.}, language = {en} }