@article{GarnierLaschewsky2006, author = {Garnier, Sebastien and Laschewsky, Andre}, title = {Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {284}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {Berlin}, issn = {0303-402X}, doi = {10.1007/s00396-006-1484-9}, pages = {1243 -- 1254}, year = {2006}, abstract = {Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.}, language = {en} } @article{GuietGoebelKlinganetal.2015, author = {Guiet, Amandine and Goebel, Caren and Klingan, Katharina and Lublow, Michael and Reier, Tobias and Vainio, Ulla and Kraehnert, Ralph and Schlaad, Helmut and Strasser, Peter and Zaharieva, Ivelina and Dau, Holger and Driess, Matthias and Polte, Joerg and Fischer, Anna}, title = {Hydrophobic Nanoreactor Soft-Templating: A Supramolecular Approach to Yolk@Shell Materials}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {39}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201502388}, pages = {6228 -- 6240}, year = {2015}, abstract = {Due to their unique morphology-related properties, yolk@shell materials are promising materials for catalysis, drug delivery, energy conversion, and storage. Despite their proven potential, large-scale applications are however limited due to demanding synthesis protocols. Overcoming these limitations, a simple soft-templated approach for the one-pot synthesis of yolk@shell nanocomposites and in particular of multicore metal nanoparticle@metal oxide nanostructures (M-NP@MOx) is introduced. The approach here, as demonstrated for Au-NP@ITOTR (ITOTR standing for tin-rich ITO), relies on polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) inverse micelles as two compartment nanoreactor templates. While the hydrophilic P4VP core incorporates the hydrophilic metal precursor, the hydrophobic PS corona takes up the hydrophobic metal oxide precursor. As a result, interfacial reactions between the precursors can take place, leading to the formation of yolk@shell structures in solution. Once calcined these micelles yield Au-NP@ITOTR nanostructures, composed of multiple 6 nm sized Au NPs strongly anchored onto the inner surface of porous 35 nm sized ITOTR hollow spheres. Although of multicore nature, only limited sintering of the metal nanoparticles is observed at high temperatures (700 degrees C). In addition, the as-synthesized yolk@shell structures exhibit high and stable activity toward CO electrooxidation, thus demonstrating the applicability of our approach for the design of functional yolk@shell nanocatalysts.}, language = {en} } @article{GuietUnmuessigGoebeletal.2016, author = {Guiet, Amandine and Unm{\"u}ssig, Tobias and G{\"o}bel, Caren and Vainio, Ulla and Wollgarten, Markus and Driess, Matthias and Schlaad, Helmut and Polte, J{\"o}rg and Fischer, Anna}, title = {Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications}, series = {Earth \& planetary science letters}, volume = {8}, journal = {Earth \& planetary science letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b06595}, pages = {28019 -- 28029}, year = {2016}, language = {en} }