@article{EngelMicheelHanack2022, author = {Engel, Robert and Micheel, Burkhard and Hanack, Katja}, title = {Three-dimensional cell culture approach for in vitro immunization and the production of monoclonal antibodies}, series = {Biomedical materials : materials for tissue engineering and regenerative medicine}, volume = {17}, journal = {Biomedical materials : materials for tissue engineering and regenerative medicine}, number = {5}, publisher = {Inst. of Physics}, address = {London}, issn = {1748-6041}, doi = {10.1088/1748-605X/ac7b00}, pages = {11}, year = {2022}, abstract = {The generation of monoclonal antibodies using an in vitro immunization approach is a promising alternative to conventional hybridoma technology. As recently published, the in vitro approach enables an antigen-specific activation of B lymphocytes within 10-12 d followed by immortalization and subsequent selection of hybridomas. This in vitro process can be further improved by using a three-dimensional surrounding to stabilize the complex microenvironment required for a successful immune reaction. In this study, the suitability of Geltrex as a material for the generation of monoclonal antigen-specific antibodies by in vitro immunization was analyzed. We could show that dendritic cells, B cells, and T cells were able to travel through and interact inside of the matrix, leading to the antigen-specific activation of T and B cells. For cell recovery and subsequent hybridoma technique the suitability of dispase and Corning cell recovery solution (CRS) was compared. In our experiments, the use of dispase resulted in a severe alteration of cell surface receptor expression patterns and significantly higher cell death, while we could not detect an adverse effect of Corning CRS. Finally, an easy approach for high-density cell culture was established by printing an alginate ring inside a cell culture vessel. The ring was filled with Geltrex, cells, and medium to ensure a sufficient supply during cultivation. Using this approach, we were able to generate monoclonal hybridomas that produce antigen-specific antibodies against ovalbumin and the SARS-CoV-2 nucleocapsid protein.}, language = {en} } @article{HolzloehnerHanack2017, author = {Holzl{\"o}hner, Pamela and Hanack, Katja}, title = {Generation of murine monoclonal antibodies by hybridoma technology}, series = {JoVE : Video journal}, journal = {JoVE : Video journal}, number = {119}, publisher = {JoVE}, address = {Cambridge}, issn = {1940-087X}, doi = {10.3791/54832}, pages = {7}, year = {2017}, abstract = {Monoclonal antibodies are universal binding molecules and are widely used in biomedicine and research. Nevertheless, the generation of these binding molecules is time-consuming and laborious due to the complicated handling and lack of alternatives. The aim of this protocol is to provide one standard method for the generation of monoclonal antibodies using hybridoma technology. This technology combines two steps. Step 1 is an appropriate immunization of the animal and step 2 is the fusion of B lymphocytes with immortal myeloma cells in order to generate hybrids possessing both parental functions, such as the production of antibody molecules and immortality. The generated hybridoma cells were then recloned and diluted to obtain stable monoclonal cell cultures secreting the desired monoclonal antibody in the culture supernatant. The supernatants were tested in enzyme-linked immunosorbent assays (ELISA) for antigen specificity. After the selection of appropriate cell clones, the cells were transferred to mass cultivation in order to produce the desired antibody molecule in large amounts. The purification of the antibodies is routinely performed by affinity chromatography. After purification, the antibody molecule can be characterized and validated for the final test application. The whole process takes 8 to 12 months of development, and there is a high risk that the antibody will not work in the desired test system.}, language = {en} }