@article{GhafarianWielandNendel2022, author = {Ghafarian, Fatemeh and Wieland, Ralf and Nendel, Claas}, title = {Estimating the Evaporative Cooling Effect of Irrigation within and above Soybean Canopy}, series = {Water}, volume = {14}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14030319}, pages = {16}, year = {2022}, abstract = {Vegetation with an adequate supply of water might contribute to cooling the land surface around it through the latent heat flux of transpiration. This study investigates the potential estimation of evaporative cooling at plot scale, using soybean as example. Some of the plants' physiological parameters were monitored and sampled at weekly intervals. A physics-based model was then applied to estimate the irrigation-induced cooling effect within and above the canopy during the middle and late season of the soybean growth period. We then examined the results of the temperature changes at a temporal resolution of ten minutes between every two irrigation rounds. During the middle and late season of growth, the cooling effects caused by evapotranspiration within and above the canopy were, on average, 4.4 K and 2.9 K, respectively. We used quality indicators such as R-squared (R-2) and mean absolute error (MAE) to evaluate the performance of the model simulation. The performance of the model in this study was better above the canopy (R-2 = 0.98, MAE = 0.3 K) than below (R-2 = 0.87, MAE = 0.9 K) due to the predefined thermodynamic condition used to estimate evaporative cooling. Moreover, the study revealed that canopy cooling contributes to mitigating heat stress conditions during the middle and late seasons of crop growth.}, language = {en} } @article{ZhongCausaMooreetal.2020, author = {Zhong, Yufei and Causa, Martina and Moore, Gareth John and Krauspe, Philipp and Xiao, Bo and G{\"u}nther, Florian and Kublitski, Jonas and BarOr, Eyal and Zhou, Erjun and Banerji, Natalie}, title = {Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-14549-w}, pages = {1 -- 10}, year = {2020}, abstract = {Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17\% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.}, language = {en} } @article{Fuhr2021, author = {Fuhr, Harald}, title = {The rise of the Global South and the rise in carbon emissions}, series = {Third world quarterly}, volume = {42}, journal = {Third world quarterly}, number = {11}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0143-6597}, doi = {10.1080/01436597.2021.1954901}, pages = {2724 -- 2746}, year = {2021}, abstract = {Jointly with the Global North, the rise of the Global South has come at a high cost to the environment. Driven by its high energy intensity and the use of fossil fuels, the South has contributed a significant portion of global emissions during the last 30 years, and is now contributing some 63\% of today's total GHG emissions (including land-use change and forestry). Similar to the Global North, the Global South's emissions are heavily concentrated: India and China alone account for some 60\% and the top 10 countries for some 78\% of the group's emissions, while some 120 countries account for only 22\%. Without highlighting such differences, it makes little sense to use the term 'Global South'. Its members are affected differently, and contribute differently to global climate change. They neither share a common view, nor do they pursue joint interests when it comes to international climate negotiations. Instead, they are organised into more than a dozen subgroups of the global climate regime. There is no single climate strategy for the Global South, and climate action will differ enormously from country to country. Furthermore, just and equitable transitions may be particularly challenging for some countries.}, language = {en} }