@article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @phdthesis{deVera2018, author = {de Vera, Jean-Pierre Paul}, title = {The relevance of ecophysiology in astrobiology and planetary research}, school = {Universit{\"a}t Potsdam}, pages = {219}, year = {2018}, abstract = {Eco-physiological processes are expressing the interaction of organisms within an environmental context of their habitat and their degree of adaptation, level of resistance as well as the limits of life in a changing environment. The present study focuses on observations achieved by methods used in this scientific discipline of "Ecophysiology" and to enlarge the scientific context in a broader range of understanding with universal character. The present eco-physiological work is building the basis for classifying and exploring the degree of habitability of another planet like Mars by a bio-driven experimentally approach. It offers also new ways of identifying key-molecules which are playing a specific role in physiological processes of tested organisms to serve as well as potential biosignatures in future space exploration missions with the goal to search for life. This has important implications for the new emerging scientific field of Astrobiology. Astrobiology addresses the study of the origin, evolution, distribution and future of life in the universe. The three fundamental questions which are hidden behind this definition are: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? It means that this multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System. It comprises the search for the evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System like the icy moons of the Jovian and Saturnian system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. For this purpose an integrated research strategy was applied, which connects field research, laboratory research allowing planetary simulation experiments with investigation enterprises performed in space (particularly performed in the low Earth Orbit.}, language = {en} }