@article{RuszkiewiczdeMacedoMirandaVizueteetal.2018, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Teixeira da Rocha, Joao B. and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {68}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2018.08.007}, pages = {189 -- 202}, year = {2018}, abstract = {Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.}, language = {en} } @article{RuszkiewiczdeMacedoMirandaVizueteetal.2019, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Antunes Soares, Felix A. and Aschner, Michael}, title = {Sex-Specific response of caenorhabditis elegans to Methylmercury Toxicity}, series = {Neurotoxicity Research}, volume = {35}, journal = {Neurotoxicity Research}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1029-8428}, doi = {10.1007/s12640-018-9949-4}, pages = {208 -- 216}, year = {2019}, abstract = {Methylmercury (MeHg), an abundant environmental pollutant, has long been known to adversely affect neurodevelopment in both animals and humans. Several reports from epidemiological studies, as well as experimental data indicate sex-specific susceptibility to this neurotoxicant; however, the molecular bases of this process are still not clear. In the present study, we used Caenorhabditis elegans (C. elegans), to investigate sex differences in response to MeHg toxicity during development. Worms at different developmental stage (L1, L4, and adult) were treated with MeHg for 1h. Lethality assays revealed that male worms exhibited significantly higher resistance to MeHg than hermaphrodites, when at L4 stage or adults. However, the number of worms with degenerated neurons was unaffected by MeHg, both in males and hermaphrodites. Lower susceptibility of males was not related to changes in mercury (Hg) accumulation, which was analogous for both wild-type (wt) and male-rich him-8 strain. Total glutathione (GSH) levels decreased upon MeHg in him-8, but not in wt. Moreover, the sex-dependent response of the cytoplasmic thioredoxin system was observedmales exhibited significantly higher expression of thioredoxin TRX-1, and thioredoxin reductase TRXR-1 expression was downregulated upon MeHg treatment only in hermaphrodites. These outcomes indicate that the redox status is an important contributor to sex-specific sensitivity to MeHg in C. elegans.}, language = {en} } @article{ReyesVazquezZeidaetal.2016, author = {Reyes, Anibal M. and Vazquez, Diego S. and Zeida, Ari and Hugo, Martin and Dolores Pineyro, M. and Ines De Armas, Maria and Estrin, Dario and Radi, Rafael and Santos, Javier and Trujillo, Madia}, title = {PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase}, series = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, volume = {101}, journal = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, publisher = {Elsevier}, address = {New York}, issn = {0891-5849}, doi = {10.1016/j.freeradbiomed.2016.10.005}, pages = {249 -- 260}, year = {2016}, abstract = {Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus, the characterization of the bacterial antioxidant systems could facilitate novel drug developments. In this work, we characterized the product of the gene Rv1608c from M. tuberculosis, which according to sequence homology had been annotated as a putative peroxiredoxin of the peroxiredoxin Q subfamily (PrxQ B from M. tuberculosis or MtPrxQ B). The protein has been reported to be essential for M. tuberculosis growth in cholesterol-rich medium. We demonstrated the M. tuberculosis thioredoxin B/C-dependent peroxidase activity of MtPrxQ B, which acted as a two-cysteine peroxiredoxin that could function, although less efficiently, using a one-cysteine mechanism. Through steady-state and competition kinetic analysis, we proved that the net forward rate constant of MtPrxQ B reaction was 3 orders of magnitude faster for fatty acid hydroperoxides than for hydrogen peroxide (3x10(6) vs 6x10(3) M-1 s(-1), respectively), while the rate constant of peroxynitrite reduction was (0.6-1.4) x10(6) M-1 s(-1) at pH 7.4. The enzyme lacked activity towards cholesterol hydroperoxides solubilized in sodium deoxycholate. Both thioredoxin B and C rapidly reduced the oxidized form of MtPrxQ B, with rates constants of 0.5x10(6) and 1x10(6) M-1 s(-1), respectively. Our data indicated that MtPrxQ B is monomeric in solution both under reduced and oxidized states. In spite of the similar hydrodynamic behavior the reduced and oxidized forms of the protein showed important structural differences that were reflected in the protein circular dichroism spectra.}, language = {en} }