@article{MonhonvalStraussThomasetal.2022, author = {Monhonval, Arthur and Strauss, Jens and Thomas, Maxime and Hirst, Catherine and Titeux, Hugues and Louis, Justin and Gilliot, Alexia and D'Aische, Eleonore du Bois and Pereira, Benoit and Vandeuren, Aubry and Grosse, Guido and Schirrmeister, Lutz and Jongejans, Loeka Laura and Ulrich, Mathias and Opfergelt, Sophie}, title = {Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral-organic carbon interactions}, series = {Permafrost and periglacial processes}, volume = {33}, journal = {Permafrost and periglacial processes}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.2162}, pages = {452 -- 469}, year = {2022}, abstract = {The stabilizing properties of mineral-organic carbon (OC) interactions have been studied in many soil environments (temperate soils, podzol lateritic soils, and paddy soils). Recently, interest in their role in permafrost regions is increasing as permafrost was identified as a hotspot of change. In thawing ice-rich permafrost regions, such as the Yedoma domain, 327-466 Gt of frozen OC is buried in deep sediments. Interactions between minerals and OC are important because OC is located very near the mineral matrix. Mineral surfaces and elements could mitigate recent and future greenhouse gas emissions through physical and/or physicochemical protection of OC. The dynamic changes in redox and pH conditions associated with thermokarst lake formation and drainage trigger metal-oxide dissolution and precipitation, likely influencing OC stabilization and microbial mineralization. However, the influence of thermokarst processes on mineral-OC interactions remains poorly constrained. In this study, we aim to characterize Fe, Mn, Al, and Ca minerals and their potential protective role for OC. Total and selective extractions were used to assess the crystalline and amorphous oxides or complexed metal pools as well as the organic acids found within these pools. We analyzed four sediment cores from an ice-rich permafrost area in Central Yakutia, which were drilled (i) in undisturbed Yedoma uplands, (ii) beneath a recent lake formed within Yedoma deposits, (iii) in a drained thermokarst lake basin, and (iv) beneath a mature thermokarst lake from the early Holocene period. We find a decrease in the amount of reactive Fe, Mn, Al, and Ca in the deposits on lake formation (promoting reduction reactions), and this was largely balanced by an increase in the amount of reactive metals in the deposits on lake drainage (promoting oxidation reactions). We demonstrate an increase in the metal to C molar ratio on thermokarst process, which may indicate an increase in metal-C bindings and could provide a higher protective role against microbial mineralization of organic matter. Finally, we find that an increase in mineral-OC interactions corresponded to a decrease in CO2 and CH4 gas emissions on thermokarst process. Mineral-OC interactions could mitigate greenhouse gas production from permafrost thaw as soon as lake drainage occurs.}, language = {en} } @article{StolpmannMollenhauerMorgensternetal.2022, author = {Stolpmann, Lydia and Mollenhauer, Gesine and Morgenstern, Anne and Hammes, Jens S. and Boike, Julia and Overduin, Pier Paul and Grosse, Guido}, title = {Origin and pathways of dissolved organic carbon in a small catchment in the Lena River Delta}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.759085}, pages = {15}, year = {2022}, abstract = {The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km(2)) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (delta O-18 and delta D) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L-1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 C-14 y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km(-2) per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.}, language = {en} } @article{MonhonvalStraussMaucletetal.2021, author = {Monhonval, Arthur and Strauss, Jens and Mauclet, Elisabeth and Hirst, Catherine and Bemelmans, Nathan and Grosse, Guido and Schirrmeister, Lutz and Fuchs, Matthias and Opfergelt, Sophie}, title = {Iron redistribution upon thermokarst processes in the Yedoma domain}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.703339}, pages = {18}, year = {2021}, abstract = {Ice-rich permafrost has been subject to abrupt thaw and thermokarst formation in the past and is vulnerable to current global warming. The ice-rich permafrost domain includes Yedoma sediments that have never thawed since deposition during the late Pleistocene and Alas sediments that were formed by previous thermokarst processes during the Lateglacial and Holocene warming. Permafrost thaw unlocks organic carbon (OC) and minerals from these deposits and exposes OC to mineralization. A portion of the OC can be associated with iron (Fe), a redox-sensitive element acting as a trap for OC. Post-depositional thaw processes may have induced changes in redox conditions in these deposits and thereby affected Fe distribution and interactions between OC and Fe, with knock-on effects on the role that Fe plays in mediating present day OC mineralization. To test this hypothesis, we measured Fe concentrations and proportion of Fe oxides and Fe complexed with OC in unthawed Yedoma and previously thawed Alas deposits. Total Fe concentrations were determined on 1,292 sediment samples from the Yedoma domain using portable X-ray fluorescence; these concentrations were corrected for trueness using a calibration based on a subset of 144 samples measured by inductively coupled plasma optical emission spectrometry after alkaline fusion (R (2) = 0.95). The total Fe concentration is stable with depth in Yedoma deposits, but we observe a depletion or accumulation of total Fe in Alas deposits, which experienced previous thaw and/or flooding events. Selective Fe extractions targeting reactive forms of Fe on unthawed and previously thawed deposits highlight that about 25\% of the total Fe is present as reactive species, either as crystalline or amorphous oxides, or complexed with OC, with no significant difference in proportions of reactive Fe between Yedoma and Alas deposits. These results suggest that redox driven processes during past thermokarst formation impact the present-day distribution of total Fe, and thereby the total amount of reactive Fe in Alas versus Yedoma deposits. This study highlights that ongoing thermokarst lake formation and drainage dynamics in the Arctic influences reactive Fe distribution and thereby interactions between Fe and OC, OC mineralization rates, and greenhouse gas emissions.}, language = {en} } @article{LiSpangenbergSchicksetal.2022, author = {Li, Zhen and Spangenberg, Erik and Schicks, Judith Maria and Kempka, Thomas}, title = {Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic}, series = {Energies}, volume = {15}, journal = {Energies}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en15144986}, pages = {25}, year = {2022}, abstract = {The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s.}, language = {en} } @article{RadosavljevicLantuitKnoblauchetal.2022, author = {Radosavljevic, Boris and Lantuit, Hugues and Knoblauch, Christian and Couture, Nicole and Herzschuh, Ulrike and Fritz, Michael}, title = {Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada}, series = {Journal of marine science and engineering}, volume = {10}, journal = {Journal of marine science and engineering}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2077-1312}, doi = {10.3390/jmse10111589}, pages = {18}, year = {2022}, abstract = {Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.\%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area.}, language = {en} } @article{RolphOverduinRavensetal.2022, author = {Rolph, Rebecca and Overduin, Pier Paul and Ravens, Thomas and Lantuit, Hugues and Langer, Moritz}, title = {ArcticBeach v1.0}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.962208}, pages = {19}, year = {2022}, abstract = {In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.}, language = {en} } @article{DvornikovLeibmanHeimetal.2018, author = {Dvornikov, Yury and Leibman, Marina and Heim, Birgit and Bartsch, Annett and Herzschuh, Ulrike and Skorospekhova, Tatiana and Fedorova, Irina and Khomutov, Artem and Widhalm, Barbara and Gubarkov, Anatoly and R{\"o}ßler, Sebastian}, title = {Terrestrial CDOM in lakes of Yamal Peninsula}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10020167}, pages = {21}, year = {2018}, abstract = {In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4\% and 28.4\% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces.}, language = {en} } @article{SaviComitiStrecker2021, author = {Savi, Sara and Comiti, Francesco and Strecker, Manfred}, title = {Pronounced increase in slope instability linked to global warming}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {46}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {7}, publisher = {Wiley}, address = {New York}, issn = {0197-9337}, doi = {10.1002/esp.5100}, pages = {1328 -- 1347}, year = {2021}, abstract = {In recent decades, slope instability in high-mountain regions has often been linked to increase in temperature and the associated permafrost degradation and/or the increase in frequency/intensity of rainstorm events. In this context we analyzed the spatiotemporal evolution and potential controlling mechanisms of small- to medium-sized mass movements in a high-elevation catchment of the Italian Alps (Sulden/Solda basin). We found that slope-failure events (mostly in the form of rockfalls) have increased since the 2000s, whereas the occurrence of debris flows has increased only since 2010. The current climate-warming trend registered in the study area apparently increases the elevation of rockfall-detachment areas by approximately 300 m, mostly controlled by the combined effects of frost-cracking and permafrost thawing. In contrast, the occurrence of debris flows does not exhibit such an altitudinal shift, as it is primarily driven by extreme precipitation events exceeding the 75th percentile of the intensity-duration rainfall distribution. Potential debris-flow events in this environment may additionally be influenced by the accumulation of unconsolidated debris over time, which is then released during extreme rainfall events. Overall, there is evidence that the upper Sulden/Solda basin (above ca. 2500 m above sea level [a.s.l.]), and especially the areas in the proximity of glaciers, have experienced a significant decrease in slope stability since the 2000s, and that an increase in rockfalls and debris flows during spring and summer can be inferred. Our study thus confirms that "forward-looking" hazard mapping should be undertaken in these increasingly frequented, high-elevation areas of the Alps, as environmental change has elevated the overall hazard level in these regions.}, language = {en} } @article{TapeJonesArpetal.2018, author = {Tape, Ken D. and Jones, Benjamin M. and Arp, Christopher D. and Nitze, Ingmar and Grosse, Guido}, title = {Tundra be dammed}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14332}, pages = {4478 -- 4488}, year = {2018}, abstract = {Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293km(2)) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.}, language = {en} } @article{CreightonParsekianAngelopoulosetal.2018, author = {Creighton, Andrea L. and Parsekian, Andrew D. and Angelopoulos, Michael and Jones, Benjamin M. and Bondurant, A. and Engram, M. and Lenz, Josefine and Overduin, Pier Paul and Grosse, Guido and Babcock, E. and Arp, Christopher D.}, title = {Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB016121}, pages = {9310 -- 9323}, year = {2018}, abstract = {Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions.}, language = {en} } @article{CochLamoureuxKnoblauchetal.2018, author = {Coch, Caroline and Lamoureux, Scott F. and Knoblauch, Christian and Eischeid, Isabell and Fritz, Michael and Obu, Jaroslav and Lantuit, Hugues}, title = {Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada)}, series = {Artic science}, volume = {4}, journal = {Artic science}, number = {4}, publisher = {Canadian science publishing}, address = {Ottawa}, issn = {2368-7460}, doi = {10.1139/as-2018-0010}, pages = {750 -- 780}, year = {2018}, abstract = {Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0\% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes.}, language = {en} } @phdthesis{Angelopoulos2020, author = {Angelopoulos, Michael}, title = {Mechanisms of sub-aquatic permafrost evolution in Arctic coastal environments}, school = {Universit{\"a}t Potsdam}, pages = {165}, year = {2020}, abstract = {Subsea permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. It is a reservoir and confining layer for gas hydrates and has the potential to release greenhouse gases and affect global climate change. Furthermore, subsea permafrost thaw destabilizes coastal infrastructure. While numerous studies focus on its distribution and rate of thaw over glacial timescales, these studies have not been brought together and examined in their entirety to assess rates of thaw beneath the Arctic Ocean. In addition, there is still a large gap in our understanding of sub-aquatic permafrost processes on finer spatial and temporal scales. The degradation rate of subsea permafrost is influenced by the initial conditions upon submergence. Terrestrial permafrost that has already undergone warming, partial thawing or loss of ground ice may react differently to inundation by seawater compared to previously undisturbed ice-rich permafrost. Heat conduction models are sufficient to model the thaw of thick subsea permafrost from the bottom, but few studies have included salt diffusion for top-down chemical degradation in shallow waters characterized by mean annual cryotic conditions on the seabed. Simulating salt transport is critical for assessing degradation rates for recently inundated permafrost, which may accelerate in response to warming shelf waters, a lengthening open water season, and faster coastal erosion rates. In the nearshore zone, degradation rates are also controlled by seasonal processes like bedfast ice, brine injection, seasonal freezing under floating ice conditions and warm freshwater discharge from large rivers. The interplay of all these variables is complex and needs further research. To fill this knowledge gap, this thesis investigates sub-aquatic permafrost along the southern coast of the Bykovsky Peninsula in eastern Siberia. Sediment cores and ground temperature profiles were collected at a freshwater thermokarst lake and two thermokarst lagoons in 2017. At this site, the coastline is retreating, and seawater is inundating various types of permafrost: sections of ice-rich Pleistocene permafrost (Yedoma) cliffs at the coastline alternate with lagoons and lower elevation previously thawed and refrozen permafrost basins (Alases). Electrical resistivity surveys with floating electrodes were carried out to map ice-bearing permafrost and taliks (unfrozen zones in the permafrost, usually formed beneath lakes) along the diverse coastline and in the lagoons. Combined with the borehole data, the electrical resistivity results permit estimation of contemporary ice-bearing permafrost characteristics, distribution, and occasionally, thickness. To conceptualize possible geomorphological and marine evolutionary pathways to the formation of the observed layering, numerical models were applied. The developed model incorporates salt diffusion and seasonal dynamics at the seabed, including bedfast ice. Even along coastlines with mean annual non-cryotic boundary conditions like the Bykovsky Peninsula, the modelling results show that salt diffusion minimizes seasonal freezing of the seabed, leading to faster degradation rates compared to models without salt diffusion. Seasonal processes are also important for thermokarst lake to lagoon transitions because lagoons can generate cold hypersaline conditions underneath the ice cover. My research suggests that ice-bearing permafrost can form in a coastal lagoon environment, even under floating ice. Alas basins, however, may degrade more than twice as fast as Yedoma permafrost in the first several decades of inundation. In addition to a lower ice content compared to Yedoma permafrost, Alas basins may be pre-conditioned with salt from adjacent lagoons. Considering the widespread distribution of thermokarst in the Arctic, its integration into geophysical models and offshore surveys is important to quantify and understand subsea permafrost degradation and aggradation. Through numerical modelling, fieldwork, and a circum-Arctic review of subsea permafrost literature, this thesis provides new insights into sub-aquatic permafrost evolution in saline coastal environments.}, language = {en} } @article{RungeGrosse2020, author = {Runge, Alexandra and Grosse, Guido}, title = {Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs12152471}, pages = {23}, year = {2020}, abstract = {Permafrost is warming in the northern high latitudes, inducing highly dynamic thaw-related permafrost disturbances across the terrestrial Arctic. Monitoring and tracking of permafrost disturbances is important as they impact surrounding landscapes, ecosystems and infrastructure. Remote sensing provides the means to detect, map, and quantify these changes homogeneously across large regions and time scales. Existing Landsat-based algorithms assess different types of disturbances with similar spatiotemporal requirements. However, Landsat-based analyses are restricted in northern high latitudes due to the long repeat interval and frequent clouds, in particular at Arctic coastal sites. We therefore propose to combine Landsat and Sentinel-2 data for enhanced data coverage and present a combined annual mosaic workflow, expanding currently available algorithms, such as LandTrendr, to achieve more reliable time series analysis. We exemplary test the workflow for twelve sites across the northern high latitudes in Siberia. We assessed the number of images and cloud-free pixels, the spatial mosaic coverage and the mosaic quality with spectral comparisons. The number of available images increased steadily from 1999 to 2019 but especially from 2016 onward with the addition of Sentinel-2 images. Consequently, we have an increased number of cloud-free pixels even under challenging environmental conditions, which then serve as the input to the mosaicking process. In a comparison of annual mosaics, the Landsat+Sentinel-2 mosaics always fully covered the study areas (99.9-100 \%), while Landsat-only mosaics contained data-gaps in the same years, only reaching coverage percentages of 27.2 \%, 58.1 \%, and 69.7 \% for Sobo Sise, East Taymyr, and Kurungnakh in 2017, respectively. The spectral comparison of Landsat image, Sentinel-2 image, and Landsat+Sentinel-2 mosaic showed high correlation between the input images and mosaic bands (e.g., for Kurungnakh 0.91-0.97 between Landsat and Landsat+Sentinel-2 mosaic and 0.92-0.98 between Sentinel-2 and Landsat+Sentinel-2 mosaic) across all twelve study sites, testifying good quality mosaic results. Our results show that especially the results for northern, coastal areas was substantially improved with the Landsat+Sentinel-2 mosaics. By combining Landsat and Sentinel-2 data we accomplished to create reliably high spatial resolution input mosaics for time series analyses. Our approach allows to apply a high temporal continuous time series analysis to northern high latitude permafrost regions for the first time, overcoming substantial data gaps, and assess permafrost disturbance dynamics on an annual scale across large regions with algorithms such as LandTrendr by deriving the location, timing and progression of permafrost thaw disturbances}, language = {en} } @article{SchneiderWetterichSchirrmeisteretal.2016, author = {Schneider, Andrea and Wetterich, Sebastian and Schirrmeister, Lutz and Herzschuh, Ulrike and Meyer, Hanno and Pestryakova, Luidmila Agafyevna}, title = {Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Society of Exploration Geophysicists}, address = {Abingdon}, issn = {0800-0395}, doi = {10.3402/polar.v35.25225}, pages = {22}, year = {2016}, abstract = {Freshwater ostracods (Crustacea, Ostracoda) are valuable biological indicators. In Arctic environments, their habitat conditions are barely known and the abundance and diversity of ostracods is documented only in scattered records with incomplete ecological characterization. To determine the taxonomic range of ostracod assemblages and their habitat conditions in polygon ponds in the Indigirka Lowland, north-east Siberia, we collected more than 100 living ostracod individuals per site with a plankton net (mesh size 65 mm) and an exhaustor system from 27 water bodies and studied them in the context of substrate and hydrochemical data. During the summer of 2011, a single pond site and its ostracod population was selected for special study. This first record of the ostracod fauna in the Indigirka Lowland comprises eight species and three additional taxa. Fabaeformiscandona krochini and F. groenlandica were documented for the first time in continental Siberia. Repeated sampling of a low-centre polygon pond yielded insights into the population dynamics of F. pedata. We identified air temperature and precipitation as the main external drivers of water temperatures, water levels, ion concentrations and water stable isotope composition on diurnal and seasonal scales.}, language = {en} } @article{RungeGrosse2019, author = {Runge, Alexandra and Grosse, Guido}, title = {Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs11141730}, pages = {29}, year = {2019}, abstract = {The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.}, language = {en} } @article{SchaeferLantuitRomanovskyetal.2014, author = {Schaefer, Kevin and Lantuit, Hugues and Romanovsky, Vladimir E. and Schuur, Edward A. G. and Witt, Ronald}, title = {The impact of the permafrost carbon feedback on global climate}, series = {Environmental research letters}, volume = {9}, journal = {Environmental research letters}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/9/8/085003}, pages = {9}, year = {2014}, abstract = {Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon dioxide (CO2) and methane (CH4) to influence global climate. The permafrost carbon feedback (PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing permafrost. An analysis of available estimates PCF strength and timing indicate 120 +/- 85 Gt of carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7 +/- 4.0\% of total anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 8.5 scenario and would increase global temperatures by 0.29 +/- 0.21 degrees C or 7.8 +/- 5.7\%. For RCP4.5, the scenario closest to the 2 degrees C warming target for the climate change treaty, the range of cumulative emissions in 2100 from thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between 0.05 and 0.15 degrees C, but the relative fraction of permafrost to total emissions increases to between 3\% and 11\%. Any substantial warming results in a committed, long-term carbon release from thawing permafrost with 60\% of emissions occurring after 2100, indicating that not accounting for permafrost emissions risks overshooting the 2 degrees C warming target. Climate projections in the IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do not adequately account for emissions from thawing permafrost and the effects of the PCF on global climate. We recommend the IPCC commission a special assessment focusing on the PCF and its impact on global climate to supplement the AR5 in support of treaty negotiation.}, language = {en} } @article{HuggelClagueKorup2012, author = {Huggel, Christian and Clague, John J. and Korup, Oliver}, title = {Is climate change responsible for changing landslide activity in high mountains?}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.2223}, pages = {77 -- 91}, year = {2012}, abstract = {Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de-glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non-linear response of firn and ice to warming; three-dimensional warming of subsurface bedrock and its relation to site geology; de-glaciation accompanied by exposure of new sediment; and combined short-term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag-time effects.}, language = {en} }