@article{SinghSinha2022, author = {Singh, Manudeo and Sinha, Rajiv}, title = {Integrating hydrological connectivity in a process-response framework for restoration and monitoring prioritisation of floodplain wetlands in the Ramganga Basin, India}, series = {Water}, volume = {14}, journal = {Water}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14213520}, pages = {22}, year = {2022}, abstract = {Floodplain wetlands are critical for sustaining various ecological and hydrological functions in a riverine environment. Severe anthropogenic alterations and human occupation of floodplains have threatened these wetlands in several parts of the world. A major handicap in designing sustainable restoration and monitoring strategies for these wetlands is the lack of scientific process-based understanding and information on the basin-scale controls of their degradation. Here, we offer a novel approach to integrate the connectivity of the wetlands with the surrounding landscape along with other attributes such as stream density, hydrometeorological parameters, and groundwater dynamics to explain their degradation and then to prioritise them for restoration and monitoring. We hypothesise that the best possible connectivity scenario for the existence of a wetland would be if (a) the wetland has a high connectivity with its upslope area, and (b) the wetland has a low connectivity with its downslope region. The first condition ensures the flow of water into the wetland and the second condition allows longer water residence time in the wetland. Accordingly, we define four connectivity-based wetland health scenarios-good, no impact, bad, and worst. We have implemented the proposed method in 3226 wetlands in the Ramganga Basin in north India. Further, we have applied specific selection criteria, such as distance from the nearest stream and stream density, to prioritise the wetlands for restoration and monitoring. We conclude that the connectivity analysis offers a quick process-based assessment of wetlands' health status and serves as an important criterion to prioritise the wetlands for developing appropriate management strategies.}, language = {en} } @article{LohFynnManuetal.2022, author = {Loh, Yvonne Sena Akosua and Fynn, Obed Fiifi and Manu, Evans and Afrifa, George Yamoah and Addai, Millicent Obeng and Akurugu, Bismark Awinbire and Yidana, Sandow Mark}, title = {Groundwater-surface water interactions}, series = {Environmental earth sciences}, volume = {81}, journal = {Environmental earth sciences}, number = {22}, publisher = {Springer}, address = {New York}, issn = {1866-6280}, doi = {10.1007/s12665-022-10644-x}, pages = {15}, year = {2022}, abstract = {This research demonstrated the application of hydrochemical data and stable water isotopes of delta O-18 and delta D (or delta 2H) for evaluating the relationship between surface water in Lake Bosumtwi and the underlying groundwater system. It aimed at determining the presence or absence of a hydraulic relationship and for evaluating the possible direction of flow at the interface between the two reservoirs. The study also estimated evaporative losses of infiltrating rainwater as it transits the unsaturated zone and provided important information on the hydrological processes prevailing in the area. The results of Q-Mode hierarchical cluster analysis (HCA) clearly differentiate the lake water from the groundwater based on their spatial relationship. These results indicated that groundwater recharge occurs on the hilltops of the crater, where it is slightly acidic with low levels of dissolved ions, characterised by short residence time and rapid unrestricted vertical infiltration and recharge. The groundwater becomes more mineralized with longer contact times and deeper circulation with the host rock, while it flows from the recharge areas towards the lake at lower elevations. Analyses of delta O-18 and delta D showed a high evaporation rate on the lake surface (90\%) with a significant evaporative enrichment, whereas groundwater showed no significant isotopic variations. Thus suggesting that the aquifers have been recharged by recent meteoric water that has undergone some evaporative enrichment since the study established an evaporation rate of water infiltrating the unsaturated zone ranging from 54 to 60\%. Both reservoirs do not appear to be hydraulically connected, and where such a connection exists, it is expected to favour the lake.}, language = {en} } @article{LipusJiaBartholomaeusetal.2022, author = {Lipus, Daniel and Jia, Zeyu and Bartholom{\"a}us, Alexander and Burckhardt, Oliver and Sondermann, Megan and Wagner, Dirk and Kallmeyer, Jens}, title = {Circular metagenome-assembled genome of Methanobacterium sp. strain ERen5, a putative methanogenic, H2-utilizing terrestrial subsurface archaeon}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {10}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.00676-22}, pages = {2}, year = {2022}, abstract = {A circular, single-contig Methanobacterium sp. metagenome-assembled genome (MAG) was recovered from high-CO2 enrichments inoculated with drill core material from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered MAG highlighted putative methanogenesis genes, providing valuable information on archaeal activity in the deep biosphere.}, language = {en} } @article{SchifferleSpezialeLobanov2022, author = {Schifferle, Lukas and Speziale, Sergio and Lobanov, Sergey S.}, title = {High-pressure evolution of the refractive index of MgO up to 140 GPa}, series = {Journal of applied physics}, volume = {132}, journal = {Journal of applied physics}, number = {12}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0106626}, pages = {9}, year = {2022}, abstract = {Refractive index provides fundamental insights into the electronic structure of materials. At high pressure, however, the determination of refractive index and its wavelength dispersion is challenging, which limits our understanding of how physical properties of even simple materials, such as MgO, evolve with pressure. Here, we report on the measurement of room-temperature refractive index of MgO up to similar to 140 GPa. The refractive index of MgO at 600 nm decreases by similar to 2.4\% from similar to 1.737 at 1 atm to similar to 1.696 (+/- 0.017) at similar to 140 GPa. Despite the index at 600 nm is essentially pressure independent, the absolute wavelength dispersion of the refractive index at 550-870 nm decreases by similar to 28\% from similar to 0.015 at 1 atm to similar to 0.011 (+/- 8.04 x 10(-4)) at similar to 103 GPa. Single-effective-oscillator analysis of our refractive index data suggests that the bandgap of MgO increases by similar to 1.1 eV from 7.4 eV at 1 atm to similar to 8.5 (+/- 0.6) eV at similar to 103 GPa.}, language = {en} } @article{BartholomaeusMitzscherlingLipusetal.2022, author = {Bartholom{\"a}us, Alexander and Mitzscherling, Julia and Lipus, Daniel and MacLean, Joana and Wagner, Dirk}, title = {Draft genome sequence of Paenalcaligenes niemegkensis NGK35T, isolated from plastic-polluted soil of an abandoned landfill}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {10}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.00671-22}, pages = {2}, year = {2022}, abstract = {The Gram-negative bacterium Paenalcaligenes niemegkensis NGK35(T) was isolated from plastic debris in an abandoned landfill. It has the ability to grow on polyethylene and hexadecane as the sole carbon sources. Here, we report the corresponding draft genome, which contains 3.66 Mbp and is characterized by a G+C content of 52.1\%.}, language = {en} } @article{RikaniFrielerSchewe2022, author = {Rikani, Albano and Frieler, Katja and Schewe, Jacob}, title = {Climate change and international migration}, series = {PLoS one}, volume = {17}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0276764}, pages = {25}, year = {2022}, abstract = {International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3 degrees C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.}, language = {en} } @article{DahmHainzl2022, author = {Dahm, Torsten and Hainzl, Sebastian}, title = {A Coulomb stress response model for time-dependent earthquake forecasts}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2022JB024443}, pages = {19}, year = {2022}, abstract = {Seismicity models are probabilistic forecasts of earthquake rates to support seismic hazard assessment. Physics-based models allow extrapolating previously unsampled parameter ranges and enable conclusions on underlying tectonic or human-induced processes. The Coulomb Failure (CF) and the rate-and-state (RS) models are two widely used physics-based seismicity models both assuming pre-existing populations of faults responding to Coulomb stress changes. The CF model depends on the absolute Coulomb stress and assumes instantaneous triggering if stress exceeds a threshold, while the RS model only depends on stress changes. Both models can predict background earthquake rates and time-dependent stress effects, but the RS model with its three independent parameters can additionally explain delayed aftershock triggering. This study introduces a modified CF model where the instantaneous triggering is replaced by a mean time-to-failure depending on the absolute stress value. For the specific choice of an exponential dependence on stress and a stationary initial seismicity rate, we show that the model leads to identical results as the RS model and reproduces the Omori-Utsu relation for aftershock decays as well stress-shadowing effects. Thus, both CF and RS models can be seen as special cases of the new model. However, the new stress response model can also account for subcritical initial stress conditions and alternative functions of the mean time-to-failure depending on the problem and fracture mode.}, language = {en} } @article{SieberWilkeAppeltetal.2022, author = {Sieber, Melanie J. and Wilke, Max and Appelt, Oona and Oelze, Marcus and Koch-M{\"u}ller, Monika}, title = {Melting relations of Ca-Mg carbonates and trace element signature of carbonate melts up to 9 GPa - a proxy for melting of carbonated mantle lithologies}, series = {European journal of mineralogy}, volume = {34}, journal = {European journal of mineralogy}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {0935-1221}, doi = {10.5194/ejm-34-411-2022}, pages = {411 -- 424}, year = {2022}, abstract = {The most profound consequences of the presence of Ca-Mg carbonates (CaCO3-MgCO3) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3-MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3-MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300-1800 degrees C) using a rocking multi-anvil press. In the absence of water, Ca-Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca-Mg carbonates ( similar to Mg0.1-0.9Ca0.9-0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca-Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite-magnesite join of the CaCO3-MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.}, language = {en} } @article{JiaLipusBartholomaeusetal.2022, author = {Jia, Zeyu and Lipus, Daniel and Bartholomaeus, Alexander and Burckhardt, Oliver and Sondermann, Megan and Wagner, Dirk and Kallmeyer, Jens}, title = {Metagenome-assembled genome of a putative methanogenic Methanosarcina sp. strain enriched from terrestrial high-CO2 subsurface sediments}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {12}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.01039-22}, pages = {2}, year = {2022}, abstract = {A metagenome-assembled genome (MAG), named Methanosarcina sp. strain ERenArc_MAG2, was obtained from a 3-month-old H-2/CO2 atmosphere enrichment culture, originally inoculated with 60-m deep drill core sediment collected from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered draft genome revealed putative archaeal methanogenesis genes in the deep biosphere. A metagenome-assembled genome (MAG), named Methanosarcina sp. strain ERenArc_MAG2, was obtained from a 3-month-old H-2/CO2 atmosphere enrichment culture, originally inoculated with 60-m deep drill core sediment collected from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered draft genome revealed putative archaeal methanogenesis genes in the deep biosphere.}, language = {en} } @article{LueckGuillemoteauTronickeetal.2022, author = {L{\"u}ck, Erika and Guillemoteau, Julien and Tronicke, Jens and Rummel, Udo and Hierold, Wilfried}, title = {From point to field scale-indirect monitoring of soil moisture variations at the DWD test site in Falkenberg}, series = {Geoderma : an international journal of soil science}, volume = {427}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2022.116134}, pages = {15}, year = {2022}, abstract = {Information regarding the spatial distribution of soil water content is key in many disciplines and applications including soil and atmospheric sciences, hydrology, and agricultural engineering. Thus, within the past decades various experimental methods and strategies have been developed to map spatial variations in soil moisture distribution and to monitor temporal changes. Our study examines the combination of electrical resistivity mapping and point observations of soil moisture to infer the spatial and the temporal variability of soil moisture. Over a period of around two years, we performed field measurements on six days to collect repeated electrical resistivity mapping data for a nine-hectare test site south-east of Berlin, Germany. Permanently installed TDR probes, temporary TDR measurements within permanently installed tubes, and gravimetric measurements using soil samples provided soil moisture data at various selected points. In addition, soil analysis and classification results are available for 132 regularly distributed positions up to depths of 1.2 m. We compare and link three-dimensional resistivity models obtained via data inversion to soil composition and soil moisture as provided by our point data. Both the soil samples and the resistivity models indicate a two-layer medium characterized by a sandy top layer with varying thickness and a loamy bottom soil. For all six field campaigns, we observe similar resistivity patterns reflecting the temporally stable influence of soil texture. While the overall patterns are stable, the range of resistivity values changes with soil moisture. Finally, to estimate spatial models of soil moisture, we link our soil moisture and resistivity data using empirical petrophysical models relying on a second order polynomial function. We observe a mean prediction error for soil moisture of +/-0.034 m3 \& BULL; m? 3 using all observation points while we notice that point-specific models further reduce the error. Thus, we conclude that our experimental and data analysis strategies represent a reliable approach to establish site-specific models and to estimate three-dimensional moisture distribution including temporal variations.}, language = {en} }