@article{ZhangHuangHuangetal.2018, author = {Zhang, Yang and Huang, Wentao and Huang, Baochun and van Hinsbergen, Douwe J. J. and Yang, Tao and Dupont-Nivet, Guillaume and Guo, Zhaojie}, title = {53-43Ma Deformation of Eastern Tibet Revealed by Three Stages of Tectonic Rotation in the Gongjue Basin}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2018JB015443}, pages = {3320 -- 3338}, year = {2018}, abstract = {The Gongjue basin from the eastern Qiangtang terrane is located in the transition region where the regional structural lineation curves from east-west-oriented in Tibet to north-south-oriented in Yunnan. In this study, we sampled the red beds in the basin from the lower Gongjue to upper Ranmugou formations for the first time covering the entire stratigraphic profile. The stratigraphic ages are bracketed within 53-43Ma by new detrital zircon U-Pb ages constraining the maximum deposition age to 52.51.5Ma. Rock magnetic and petrographic studies indicate that detrital magnetite and hematite are the magnetic carriers. Positive reversals and fold tests demonstrate that the characteristic remanent magnetization has a primary origin. The Gongjue and Ranmugou formations yield mean characteristic remanent magnetization directions of D-s/I-s=31.0 degrees/21.3 degrees and D-s/I-s=15.9 degrees/22.0 degrees, respectively. The magnetic inclination of these characteristic remanent magnetizations is significantly shallowed compared to the expected inclination for the locality. However, the elongation/inclination correction method does not provide a meaningful correction, likely because of syn-depositional rotation. Rotations relative to the Eurasian apparent polar wander path occurred in three stages: Stage I, 33.33.4 degrees clockwise rotation during the deposition of the Gongjue and lower Ranmugou formations; Stage II, 26.93.7 degrees counterclockwise rotation during deposition of the lower and middle Ranmugou formation; and Stage III, 17.73.3 degrees clockwise rotation after 43Ma. The complex rotation history recorded in the basin is possibly linked to sinistral shear along the Qiangtang block during India indentation into Asia and the early stage of the extrusion of the northwestern Indochina blocks away from eastern Tibet.}, language = {en} } @article{CaoNiSummersetal.2019, author = {Cao, Xing and Ni, Binbin and Summers, Danny and Shprits, Yuri Y. and Gu, Xudong and Fu, Song and Lou, Yuequn and Zhang, Yang and Ma, Xin and Zhang, Wenxun and Huang, He and Yi, Juan}, title = {Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL081550}, pages = {590 -- 598}, year = {2019}, abstract = {Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <= 10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.}, language = {en} } @article{MeijerDupontNivetAbelsetal.2019, author = {Meijer, Niels and Dupont-Nivet, Guillaume and Abels, Hemmo A. and Kaya, Mustafa Y. and Licht, Alexis and Xiao, Meimei and Zhang, Yang and Roperch, Pierrick and Poujol, Marc and Lai, Zhongping and Guo, Zhaojie}, title = {Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene}, series = {Earth and planetary science letters}, volume = {510}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.12.031}, pages = {73 -- 84}, year = {2019}, abstract = {The establishment and evolution of the Asian monsoons and arid interior have been linked to uplift of the Tibetan Plateau, retreat of the inland proto-Paratethys Sea and global cooling during the Cenozoic. However, the respective role of these driving mechanisms remains poorly constrained. This is partly due to a lack of continental records covering the key Eocene epoch marked by the onset of Tibetan Plateau uplift, proto-Paratethys Sea incursions and long-term global cooling. In this study, we reconstruct paleoenvironments in the Xining Basin, NE Tibet, to show a long-term drying of the Asian continental interior from the early Eocene to the Oligocene. Superimposed on this trend are three alternations between arid mudflat and wetter saline lake intervals, which are interpreted to reflect atmospheric moisture fluctuations in the basin. We date these fluctuations using magnetostratigraphy and the radiometric age of an intercalated tuff layer. The first saline lake interval is tentatively constrained to the late Paleocene-early Eocene. The other two are firmly dated between similar to 46 Ma (top magnetochron C21n) and similar to 41 Ma (base C18r) and between similar to 40 Ma (base C18n) and similar to 37 Ma (top C17n). Remarkably, these phases correlate in time with highstands of the proto-Paratethys Sea. This strongly suggests that these sea incursions enhanced westerly moisture supply as far inland as the Xining Basin. We conclude that the proto-Paratethys Sea constituted a key driver of Asian climate and should be considered in model and proxy interpretations. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{HuangJacksonDekkersetal.2019, author = {Huang, Wentao and Jackson, Michael J. and Dekkers, Mark J. and Zhang, Yang and Zhang, Bo and Guo, Zhaojie and Dupont-Nivet, Guillaume}, title = {Challenges in isolating primary remanent magnetization from Tethyan carbonate rocks on the Tibetan Plateau: Insight from remagnetized Upper Triassic limestones in the eastern Qiangtang block}, series = {Earth \& planetary science letters}, volume = {523}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.06.035}, pages = {15}, year = {2019}, abstract = {Carbonate rocks, widely used for paleomagnetically quantifying the drift history of the Gondwana derived continental blocks of the Tibetan Plateau and evolution of the Paleo/Meso/Neo-Tethys Oceans, are prone to pervasive remagnetization. Identifying remagnetization is difficult because it is commonly undetectable through the classic paleomagnetic field tests. Here we apply comprehensive paleomagnetic, rock magnetic, and petrographic studies to upper Triassic limestones in the eastern Qiangtang block. Our results reveal that detrital/biogenic magnetite, which may carry the primary natural remanent magnetization (NRM), is rarely preserved in these rocks. In contrast, authigenic magnetite and hematite pseudomorphs after pyrite, and monoclinic pyrrhotite record three episodes of remagnetization. The earliest remagnetization was induced by oxidation of early diagenetic pyrite to magnetite, probably related to the collision between the northeastern Tibetan Plateau and the Qiangtang block after closure of the Paleo-Tethys Ocean in the Late Triassic. The second remagnetization, residing in hematite and minor goethite, which is the further subsurface oxidation product of pyrite/magnetite, is possibly related to the development of the localized Cenozoic basins soon after India-Asia collision in the Paleocene. The youngest remagnetization is a combination of thermoviscous and chemical remanent magnetization carried by authigenic magnetite and pyrrhotite, respectively. Our analyses suggest that a high supply of organic carbon during carbonate deposition, prevailing sulfate reducing conditions during early diagenesis, and widespread orogenic fluid migration related to crustal shortening during later diagenesis, have altered the primary remanence of the shallow-water Tethyan carbonate rocks of the Tibetan Plateau. We emphasize that all paleomagnetic results from these rocks must be carefully examined for remagnetization before being used for paleogeographic reconstructions. Future paleomagnetic investigations of the carbonate rocks in orogenic belts should be accompanied by thorough rock magnetic and petrographic studies to determine the origin of the NRM. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZhangHuangZhangetal.2019, author = {Zhang, Yang and Huang, Wentao and Zhang, Yuanyuan and Poujol, Marc and Guillot, Stephane and Roperch, Pierrick and Dupont-Nivet, Guillaume and Guo, Zhaojie}, title = {Detrital zircon provenance comparison between the Paleocene-Eocene Nangqian-Xialaxiu and Gongjue basins: New insights for Cenozoic paleogeographic evolution of the eastern Tibetan Plateau}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {533}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2019.109241}, pages = {19}, year = {2019}, abstract = {Paleogeographic reconstructions of terranes can greatly benefit from the provenance analysis of sediments. A series of Cenozoic basins provide key sedimentary archives for investigating the growth of the Tibetan Plateau, yet the provenance of the sediments in these basins has never been constrained robustly. Here we report sedimentary petrological and detrital zircon geochronological data from the Paleocene-Eocene Nangqian-Xialaxiu and Gongjue basins. Sandstone detrital modes and zircon morphology suggest that the samples collected in these two basins were sourced from recycled orogen. Detrital zircon geochronology indicates that sediments in the Nangqian-Xialaxiu Basin are characterized by two distinct age populations at 220-280 Ma and 405-445 Ma. In contrast, three predominant age populations of 207-256 Ma, 423-445 Ma, and 1851-1868 Ma, and two subordinate age populations of similar to 50 Ma and similar to 2500 Ma, are recognized in the Gongjue Basin. Comparison with detrital zircon ages from the surrounding terranes suggests that sediments in the Nangqian-Xialaxiu Basin come from the neighboring thrust belts, whereas sediments from the Gongjue Basin are predominantly derived from the distant Songpan-Ganzi Terrane with minor contribution from the surrounding areas. A three-stage Cenozoic evolution of the eastern Tibetan Plateau is proposed. During the Paleocene, the Nangqian-Xialaxiu Basin appeared as a set of small intermontane sub-basins and received plentiful sediments from the neighboring mountain belts; during the Eocene, the Gongjue Basin kept a relatively low altitude and was a depression at the edge of a proto-Plateau; since the Oligocene, the Tibetan Plateau further uplifted and the marginal Gongjue Basin was involved in the Tibetan interior orogeny, indicating the eastward propagation of the Tibetan Plateau.}, language = {en} }