@article{DierckeKuckeinCauleyetal.2022, author = {Diercke, Andrea and Kuckein, Christoph and Cauley, Paul Wilson and Poppenh{\"a}ger, Katja and Alvarado-G{\´o}mez, Juli{\´a}n David and Dineva, Ekaterina Ivanova and Denker, Carsten}, title = {Solar H alpha excess during Solar Cycle 24 from full-disk filtergrams of the Chromospheric Telescope}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202040091}, pages = {14}, year = {2022}, abstract = {Context The chromospheric H alpha spectral line is a strong line in the spectrum of the Sun and other stars. In the stellar regime, this spectral line is already used as a powerful tracer of stellar activity. For the Sun, other tracers, such as Ca II K, are typically used to monitor solar activity. Nonetheless, the Sun is observed constantly in H alpha with globally distributed ground-based full-disk imagers. Aims The aim of this study is to introduce the imaging H alpha excess and deficit as tracers of solar activity and compare them to other established indicators. Furthermore, we investigate whether the active region coverage fraction or the changing H alpha excess in the active regions dominates temporal variability in solar H alpha observations. Methods We used observations of full-disk H alpha filtergrams of the Chromospheric Telescope and morphological image processing techniques to extract the imaging H alpha excess and deficit, which were derived from the intensities above or below 10\% of the median intensity in the filtergrams, respectively. These thresholds allowed us to filter for bright features (plage regions) and dark absorption features (filaments and sunspots). In addition, the thresholds were used to calculate the mean intensity I-mean(E/D) for H alpha excess and deficit regions. We describe the evolution of the H alpha excess and deficit during Solar Cycle 24 and compare it to the mean intensity and other well established tracers: the relative sunspot number, the F10.7 cm radio flux, and the Mg II index. In particular, we tried to determine how constant the H alpha excess and number density of H alpha excess regions are between solar maximum and minimum. The number of pixels above or below the intensity thresholds were used to calculate the area coverage fraction of H alpha excess and deficit regions on the Sun, which was compared to the imaging H alpha excess and deficit and the respective mean intensities averaged for the length of one Carrington rotation. In addition, we present the H alpha excess and mean intensity variation of selected active regions during their disk passage in comparison to the number of pixels of H alpha excess regions. Results. The H alpha excess and deficit follow the behavior of the solar activity over the course of the cycle. They both peak around solar maximum, whereby the peak of the H alpha deficit is shortly after the solar maximum. Nonetheless, the correlation of the monthly averages of the H alpha excess and deficit is high with a Spearman correlation of rho =  0.91. The H alpha excess is closely correlated to the chromospheric Mg II index with a correlation of 0.95. The highest correlation of the H alpha deficit is found with the F10.7 cm radio flux, with a correlation of 0.89, due to their peaks after the solar activity maximum. Furthermore, the H alpha deficit reflects the cyclic behavior of polar crown filaments and their disappearance shortly before the solar maximum. We investigated the mean intensity distribution for H alpha excess regions for solar minimum and maximum. The shape of the distributions for solar minimum and maximum is very similar, but with different amplitudes. Furthermore, we found that the area coverage fraction of H alpha excess regions and the H alpha excess are strongly correlated with an overall Spearman correlation of 0.92. The correlation between the H alpha excess and the mean intensity of H alpha excess regions is 0.75. The correlation of the area coverage fraction and the mean intensity of H alpha excess regions is in general relatively low (rho = 0.45) and only for few active regions is this correlation above 0.7. The weak correlation between the area coverage fraction and mean intensity leaves us pessimistic that the degeneracy between these two quantities can be broken for the modeling of unresolved stellar surfaces.}, language = {en} } @article{IlinPoppenhaeger2022, author = {Ilin, Ekaterina and Poppenh{\"a}ger, Katja}, title = {Searching for flaring star-planet interactions in AU Mic TESS observations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1232}, pages = {4579 -- 4586}, year = {2022}, abstract = {Planets that closely orbit magnetically active stars are thought to be able to interact with their magnetic fields in a way that modulates stellar activity. This modulation in phase with the planetary orbit, such as enhanced X-ray activity, chromospheric spots, radio emission, or flares, is considered the clearest sign of magnetic star-planet interaction (SPI). However, the magnitude of this interaction is poorly constrained, and the intermittent nature of the interaction is a challenge for observers. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b, is a promising target for magnetic SPI observations. We used optical light curves of AU Mic obtained by the Transiting Exoplanet Survey Satellite to search for signs of flaring SPI with AU Mic b using a customized Anderson-Darling test. In the about 50 d of observations, the flare distributions with orbital, rotational, and synodic periods were generally consistent with intrinsic stellar flaring. We found the strongest deviation (p = 0.07, n = 71) from intrinsic flaring with the orbital period of AU Mic b, in the high-energy half of our sample (ED > 1 s). If it reflects the true SPI signal from AU Mic b, extending the observing time by a factor of 2-3 will yield a >3 sigma detection. Continued monitoring of AU Mic may therefore reveal flaring SPI with orbital phase, while rotational modulation will smear out due to the star's strong differential rotation.}, language = {en} } @article{AlexoudiMallonnKelesetal.2020, author = {Alexoudi, Xanthippi and Mallonn, Matthias and Keles, Engin and Poppenh{\"a}ger, Katja and von Essen, Carolina and Strassmeier, Klaus}, title = {Role of the impact parameter in exoplanet transmission spectroscopy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {640}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038080}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605378}, pages = {9}, year = {2020}, abstract = {Context Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. Aims We investigate the dependence of the estimated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host star. We describe how the uncertainty on the orbital parameters translates into an uncertainty on the planetary spectral slope. Methods We created synthetic transit light curves in seven different wavelength bands, from the near-ultraviolet to the near-infrared, and fit them with transit models parameterized by fixed deviating values of the impact parameter b. First, we performed a qualitative study to illustrate the effect by presenting the changes in the transmission spectrum slope with different deviations of b. Then, we quantified these variations by creating an error envelope (for centrally transiting, off-center, and grazing systems) based on a derived typical uncertainty on b from the literature. Finally, we compared the variations in the transmission spectra for different spectral types of host stars. Results Our simulations show a wavelength-dependent offset that is more pronounced at the blue wavelengths where the limb-darkening effect is stronger. This offset introduces a slope in the planetary transmission spectrum that becomes steeper with increasing b values. Variations of b by positive or negative values within its uncertainty interval introduce positive or negative slopes, thus the formation of an error envelope. The amplitude from blue optical to near-infrared wavelength for a typical uncertainty on b corresponds to one atmospheric pressure scale height and more. This impact parameter degeneracy is confirmed for different host types; K stars present prominently steeper slopes, while M stars indicate features at the blue wavelengths. Conclusions We demonstrate that transmission spectra can be hard to interpret, basically because of the limitations in defining a precise impact parameter value for a transiting exoplanet. This consequently limits a characterization of its atmosphere.}, language = {en} } @article{FosterPoppenhaegerAlvaradoGomezetal.2020, author = {Foster, Mary Grace and Poppenh{\"a}ger, Katja and Alvarado-G{\´o}mez, Juli{\´a}n David and Schmitt, J{\"u}rgen}, title = {The corona of GJ 1151 in the context of star-planet interaction}, series = {Monthly notices of the Royal Astronomical Society}, volume = {497}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa1982}, pages = {1015 -- 1019}, year = {2020}, abstract = {The low-mass star GJ 1151 has been reported to display variable low-frequency radio emission, which has been interpreted as a signpost of coronal star-planet interactions with an unseen exoplanet. Here we report the first X-ray detection of GJ 1151's corona based on the XMM-Newton data. We find that the star displays a small flare during the X-ray observation. Averaged over the observation, we detect the star with a low coronal temperature of 1.6 MK and an X-ray luminosity of L-X = 5.5 x 10(26) erg s(-1). During the quiescent time periods excluding the flare, the star remains undetected with an upper limit of L-X,L- qui <= 3.7 x 10(26) erg s(-1). This is compatible with the coronal assumptions used in a recently published model for a star-planet interaction origin of the observed radio signals from this star.}, language = {en} } @article{IlićPetkovićPoppenhaegerHosseini2022, author = {Ilić Petković, Nikoleta and Poppenh{\"a}ger, Katja and Hosseini, Seyede Marzieh}, title = {Tidal star-planet interaction and its observed impact on stellar activity in planet-hosting wide binary systems}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac861}, pages = {4380 -- 4404}, year = {2022}, abstract = {Tidal interaction between an exoplanet and its host star is a possible pathway to transfer angular momentum between the planetary orbit and the stellar spin. In cases where the planetary orbital period is shorter than the stellar rotation period, this may lead to angular momentum being transferred into the star's rotation, possibly counteracting the intrinsic stellar spin-down induced by magnetic braking. Observationally, detecting altered rotational states of single, cool field stars is challenging, as precise ages for such stars are rarely available. Here we present an empirical investigation of the rotation and magnetic activity of a sample of planet-hosting stars that are accompanied by wide stellar companions. Without needing knowledge about the absolute ages of the stars, we test for relative differences in activity and rotation of the planet hosts and their co-eval companions, using X-ray observations to measure the stellar activity levels. Employing three different tidal interaction models, we find that host stars with planets that are expected to tidally interact display elevated activity levels compared to their companion stars. We also find that those activity levels agree with the observed rotational periods for the host stars along the usual rotation-activity relationships, implying that the effect is indeed caused by a tidal interaction and not a purely magnetic interaction that would be expected to affect the stellar activity, but not necessarily the rotation. We conclude that massive, close-in planets have an impact on the stellar rotational evolution, while the smaller, more distant planets do not have a significant influence.}, language = {en} } @article{Poppenhaeger2022, author = {Poppenh{\"a}ger, Katja}, title = {Helium absorption in exoplanet atmospheres is connected to stellar coronal abundances}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac507}, pages = {1751 -- 1764}, year = {2022}, abstract = {Transit observations in the helium triplet around 10 830 Angstrom are a successful tool to study exoplanetary atmospheres and their mass loss. Forming those lines requires ionization and recombination of helium in the exoplanetary atmosphere. This ionization is caused by stellar photons at extreme ultraviolet (EUV) wavelengths; however, no currently active telescopes can observe this part of the stellar spectrum. The relevant part of the stellar EUV spectrum consists of individual emission lines, many of them being formed by iron at coronal temperatures. The stellar iron abundance in the corona is often observed to be depleted for high-activity low-mass stars due to the first ionization potential (FIP) effect. I show that stars with high versus low coronal iron abundances follow different scaling laws that tie together their X-ray emission and the narrow-band EUV flux that causes helium ionization. I also show that the stellar iron to oxygen abundance ratio in the corona can be measured reasonably well from X-ray CCD spectra, yielding similar results to high-resolution X-ray observations. Taking coronal iron abundance into account, the currently observed large scatter in the relationship of EUV irradiation with exoplanetary helium transit depths can be reduced, improving the target selection criteria for exoplanet transmission spectroscopy. In particular, previously puzzling non-detections of helium for Neptunic exoplanets are now in line with expectations from the revised scaling laws.}, language = {en} } @article{MallonnPoppenhaegerGranzeretal.2022, author = {Mallonn, Matthias and Poppenh{\"a}ger, Katja and Granzer, Thomas and Weber, Michael and Strassmeier, Klaus G.}, title = {Detection capability of ground-based meter-sized telescopes for shallow exoplanet transits}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {657}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202140599}, pages = {10}, year = {2022}, abstract = {Meter-sized ground-based telescopes are frequently used today for the follow-up of extrasolar planet candidates. While the transit signal of a Jupiter-sized object can typically be detected to a high level of confidence with small telescope apertures as well, the shallow transit dips of planets with the size of Neptune and smaller are more challenging to reveal. We employ new observational data to illustrate the photometric follow-up capabilities of meter-sized telescopes for shallow exoplanet transits. We describe in detail the capability of distinguishing the photometric signal of an exoplanet transit from an underlying trend in the light curve. The transit depths of the six targets we observed, Kepler-94b, Kepler-63b, K2-100b, K2-138b, K2-138c, and K2-138e, range from 3.9 ppt down to 0.3 ppt. For five targets of this sample, we provide the first ground-based photometric follow-up. The timing of three targets is precisely known from previous observations, and the timing of the other three targets is uncertain and we aim to constrain it. We detect or rule out the transit features significantly in single observations for the targets that show transits of 1.3 ppt or deeper. The shallower transit depths of two targets of 0.6 and 0.8 ppt were detected tentatively in single light curves, and were detected significantly by repeated observations. Only for the target of the shallowest transit depth of 0.3 ppt were we unable to draw a significant conclusion despite combining five individual light curves. An injection-recovery test on our real data shows that we detect transits of 1.3 ppt depth significantly in single light curves if the transit is fully covered, including out-of-transit data toward both sides, in some cases down to 0.7 ppt depth. For Kepler-94b, Kepler-63b, and K2-100b, we were able to verify the ephemeris. In the case of K2-138c with a 0.6 ppt deep transit, we were able to refine it, and in the case of K2-138e, we ruled out the transit in the time interval of more than ±1.5 σ of its current literature ephemeris.}, language = {en} } @article{FosterPoppenhaegerIlićPetkovićetal.2022, author = {Foster, Mary Grace and Poppenh{\"a}ger, Katja and Ilić Petković, Nikoleta and Schwope, Axel}, title = {Exoplanet X-ray irradiation and evaporation rates with eROSITA}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202141097}, pages = {11}, year = {2022}, abstract = {High-energy irradiation is a driver for atmospheric evaporation and mass loss in exoplanets. This work is based on data from eROSITA, the soft X-ray instrument on board the Spectrum Roentgen Gamma mission, as well as on archival data from other missions. We aim to characterise the high-energy environment of known exoplanets and estimate their mass-loss rates. We use X-ray source catalogues from eROSITA, XMM-Newton, Chandra, and ROSAT to derive X-ray luminosities of exoplanet host stars in the 0.2-2 keV energy band with an underlying coronal, that is, optically thin thermal spectrum. We present a catalogue of stellar X-ray and EUV luminosities, exoplanetary X-ray and EUV irradiation fluxes, and estimated mass-loss rates for a total of 287 exoplanets, 96 of which are characterised for the first time based on new eROSITA detections. We identify 14 first-time X-ray detections of transiting exoplanets that are subject to irradiation levels known to cause observable evaporation signatures in other exoplanets. This makes them suitable targets for follow-up observations.}, language = {en} } @article{PoppenhaegerKetzerMallonn2020, author = {Poppenh{\"a}ger, Katja and Ketzer, Laura and Mallonn, Matthias}, title = {X-ray irradiation and evaporation of the four young planets around V1298 Tau}, series = {Monthly notices of the Royal Astronomical Society}, volume = {500}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa1462}, pages = {4560 -- 4572}, year = {2020}, abstract = {Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations of the host star with Chandra and ROSAT to measure the current high-energy irradiation level of the planets and employ a model for the stellar activity evolution together with exoplanetary mass-loss to estimate the possible evolution of the planets. We find that V1298 Tau is X-ray bright with log L-X [erg s(-1)] = 30.1 and has a mean coronal temperature of approximate to 9 MK. This places the star amongst the more X-ray luminous ones at this stellar age. We estimate the radiation-driven mass-loss of the exoplanets and find that it depends sensitively on the possible evolutionary spin-down tracks of the star as well as on the current planetary densities. Assuming the planets are of low density due to their youth, we find that the innermost two planets can lose significant parts of their gaseous envelopes and could be evaporated down to their rocky cores depending on the stellar spin evolution. However, if the planets are heavier and follow the mass-radius relation of older planets, then even in the highest XUV irradiation scenario none of the planets is expected to cross the radius gap into the rocky regime until the system reaches an age of 5 Gyr.}, language = {en} } @article{FosterPoppenhaeger2022, author = {Foster, Grace and Poppenh{\"a}ger, Katja}, title = {Identifying interesting planetary systems for future X-ray observations}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {343}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {4}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1521-3994}, doi = {10.1002/asna.20220007}, pages = {7}, year = {2022}, abstract = {X-ray observations of star-planet systems are important to grow our understanding of exoplanets; these observations allow for studies of photoevaporation of the exoplanetary atmosphere, and in some cases even estimations of the size of the outer planetary atmosphere. The German-Russian eROSITA instrument onboard the SRG (Spectrum Roentgen Gamma) mission is performing the first all-sky X-ray survey since the 1990s, and provides X-ray fluxes and spectra of exoplanet host stars over a much larger volume than was accessible before. Using new eROSITA data as well as archival data from XMM-Newton, Chandra, and ROSAT, we estimate mass-loss rates of exoplanets under an energy-limited escape scenario and identify several exoplanets with strong X-ray irradiation and expected mass loss that are amenable to follow-up observations at other wavelengths. We model sample spectra using a toy model of an exoplanetary atmosphere to predict what exoplanet transit observations with future X-ray missions such as Athena will look like and estimate the observable X-ray transmission spectrum for a typical hot Jupiter-type exoplanet.}, language = {en} }