@article{GhignoneSudoBalestroetal.2021, author = {Ghignone, Stefano and Sudo, Masafumi and Balestro, Gianni and Borghi, Alessandro and Gattiglio, Marco and Ferrero, Silvio and Schijndel, Valby van}, title = {Timing of exhumation of meta-ophiolite units in the Western Alps}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {404-405}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2021.106443}, pages = {18}, year = {2021}, abstract = {A multidisciplinary approach to the study of collisional orogenic belts can improve our knowledge of their geodynamic evolution and may suggest new tectonic models, especially for (U)HP rocks inside the accretionary wedge. In the Western Alps, wherein nappes of different origin are stacked, having recorded different metamorphic peaks at different stages of the orogenic evolution. This study focuses on the External (EPZ) and Internal (IPZ) ophiolitic units of the Piedmont Zone (Susa Valley, Western Alps), which were deformed throughout four tectonometamorphic phases (D1 to D4), developing different foliations and cleavages (S1 to S4) at different metamorphic conditions. The IPZ and EPZ are separated by a shear zone (i.e. the Susa Shear Zone (SSZ)) during which a related mylonitic foliation (SM) developed. S1 developed at high pressure conditions (Epidote-eclogite vs. Lawsonite-blueschist facies conditions for IPZ and EPZ, respectively), as suggested by the composition of white mica (i.e. phengite), whereas S2 developed at low pressure conditions (Epidote-greenschist facies conditions in both IPZ and EPZ) and is defined by muscovite. White mica defining the SM mylonitic foliation (T1) is mostly defined by phengite, while the T2-related disjunctive cleavage is defined by fine-grained muscovite. The relative chronology inferred from meso-and micro-structural observations suggests that T1 was near-coeval with respect to the D2, while T2 developed during D4. A new set of radiometric ages of the main metamorphic foliations were obtained by in situ Ar/Ar dating on white mica. Different generations of white mica defining S1 and S2 foliations in both the IPZ and EPZ and SM in the SSZ, were dated and two main groups of ages were obtained. In both IPZ and EPZ, S1 foliation developed at-46-41 Ma, while S2 foliation developed at-40-36 Ma and was nearly coeval with the SM mylonitic foliation (-39-36 Ma). Comparison between structural, petrological and geochronological data allows to define time of coupling of the different units and consequently to infer new tectonic implications for the exhumation of meta-ophiolites of the Piedmont Zone within axial sector of the Western Alps.}, language = {en} } @article{NicoliFerrero2021, author = {Nicoli, Gautier and Ferrero, Silvio}, title = {Nanorocks, volatiles and plate tectonics}, series = {Geoscience frontiers}, volume = {12}, journal = {Geoscience frontiers}, number = {5}, publisher = {Amsterdam [u.a.]}, address = {Elsevier}, issn = {1674-9871}, doi = {10.1016/j.gsf.2021.101188}, pages = {13}, year = {2021}, abstract = {The global geological volatile cycle (H, C, N) plays an important role in the long term self-regulation of the Earth system. However, the complex interaction between its deep, solid Earth components (i.e. crust and mantle), Earth's fluid envelopes (i.e. atmosphere and hydrosphere) and plate tectonic processes is a subject of ongoing debate. In this study we want to draw attention to how the presence of primary melt (MI) and fluid (FI) inclusions in high-grade metamorphic minerals could help constrain the crustal component of the volatile cycle. To that end, we review the distribution of MI and FI throughout Earth's history, from ca. 3.0 Ga ago up to the present day. We argue that the lower crust might constitute an important, long-term, volatile storage unit, capable to influence the composition of the surface envelopes through the mean of weathering, crustal thickening, partial melting and crustal assimilation during volcanic activity. Combined with thermodynamic modelling, our compilation indicates that periods of well-established plate tectonic regimes at <0.85 Ga and 1.7-2.1 Ga, might be more prone to the reworking of supracrustal lithologies and the storage of volatiles in the lower crust. Such hypothesis has implication beyond the scope of metamorphic petrology as it potentially links geodynamic mechanisms to habitable surface conditions. MI and FI in metamorphic crustal rocks then represent an invaluable archive to assess and quantify the co-joint evolution of plate tectonics and Earth's external processes. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, language = {en} } @article{FerreroGodardPalmerietal.2018, author = {Ferrero, Silvio and Godard, Gaston and Palmeri, Rosaria and Wunder, Bernd and Cesare, Bernardo}, title = {Partial melting of ultramafic granulites from Dronning Maud Land, Antarctica}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {103}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {0003-004X}, doi = {10.2138/am-2018-6214}, pages = {610 -- 622}, year = {2018}, abstract = {In the Pan-African belt of the Dronning Maud Land, Antarctica, crystallized melt inclusions (nanogranitoids) occur in garnet from ultramafic granulites. The granulites contain the peak assemblage pargasite+garnet+clinopyroxene with rare relict orthopyroxene and biotite, and retrograde symplectites at contacts between garnet and amphibole. Garnet contains two generations of melt inclusions. Type 1 inclusions, interpreted as primary, are isolated, < 10 mu m in size, and generally have negative crystal shapes. They contain kokchetavite, kumdykolite, and phlogopite, with quartz and zoisite as minor phases, and undevitrified glass was identified in one inclusion. Type 2 inclusions are < 30 mu m in size, secondary, and contain amphibole, feldspars, and zoisite. Type 2 inclusions appear to be the crystallization products of a melt that coexisted with an immiscible CO2-rich fluid. The nanogranitoids were re-homogenized after heating in a piston-cylinder in a series of four experiments to investigate their composition. The conditions ranged between 900 and 950 degrees C at 1.5-2.4 GPa. Type 1 inclusions are trachytic and ultrapotassic, whereas type 2 melts are dacitic to rhyolitic. Thermodynamic modeling of the ultramafic composition in the MnNCKFMASHTO system shows that anatexis occurred at the end of the prograde P-T path, between the solidus (at ca. 860 degrees C-1.4 GPa) and the peak conditions (at ca. 960 degrees C-1.7 GPa). The model melt composition is felsic and similar to that of type 1 inclusions, particularly when the melting degree is low (< 1 mol\%), close to the solidus. However the modeling fails to reproduce the highly potassic signature of the melt and its low H2O content. The combination of petrology, melt inclusion study, and thermodynamic modeling supports the interpretation that melt was produced by anatexis of the ultramafic boudins near peak P-T conditions, and that type 1 inclusions contain the anatectic melt that was present during garnet growth. The felsic, ultrapotassic composition of the primary anatectic melts is compatible with low melting degrees in the presence of biotite and amphibole as reactants.}, language = {en} } @article{FerreroAngel2018, author = {Ferrero, Silvio and Angel, Ross J.}, title = {Micropetrology}, series = {Journal of petrology}, volume = {59}, journal = {Journal of petrology}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egy075}, pages = {1671 -- 1700}, year = {2018}, abstract = {Inclusions in minerals, whether fluids, melts or crystalline phases, are small pieces of the large-scale puzzle of Nature, time-consuming to investigate and often of difficult interpretation. Yet they are windows into the past of their host mineral. Mineral inclusions provide the opportunity to unravel the genesis of their host, and the increasingly refined understanding of their elastic behaviour provides the basis for alternative, equilibrium-independent geobarometry. Fluid and melt inclusions reveal information about material transfer in the Earth system, from shallow mineralization to mantle re-fertilization via subduction. The study of inclusions is thus one of the most intriguing and fertile branches of micropetrology. In this contribution, we focus on two recent developments: the use of elasticity models to extract the formation conditions of the host crystal, and the discovery and investigation of melt inclusions in metamorphic rocks. We also discuss how to evaluate the information provided by inclusions, given that they are no longer at the pressure and temperature conditions of entrapment. We discuss how to understand and quantify the changes undergone during cooling and depressurization, and how metastability-related phenomena in inclusions, such as crystallization of rare polymorphs and preservation of the original content of volatiles in fluid and melt inclusions, provide direct evidence that inclusions represent closed systems. The field of study of inclusions in minerals still has a largely untapped potential. The most fruitful avenues for future research will emerge from continuous technological innovation in analytical and imaging techniques, the application of experimental petrology, and the development and application of new theoretical models for coupled mineral behaviour under changing P-T conditions.}, language = {en} } @article{LanariFerreroGoncalvesetal.2019, author = {Lanari, Pierre and Ferrero, Silvio and Goncalves, Philippe and Grosch, Eugene G.}, title = {Metamorphic geology}, series = {Geological Society}, volume = {478}, journal = {Geological Society}, publisher = {Geological Society}, address = {London}, isbn = {978-1-78620-400-4}, issn = {0305-8719}, doi = {10.1144/SP478-2018-186}, pages = {1 -- 12}, year = {2019}, language = {en} } @article{BerkesiCzupponSzaboetal.2018, author = {Berkesi, Marta and Czuppon, Gyorgy and Szabo, Csaba and Kovacs, Istvan and Ferrero, Silvio and Boiron, Marie-Christine and Peiffert, Chantal}, title = {Pargasite in fluid inclusions of mantle xenoliths from northeast Australia (Mt. Quincan)}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {508}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2018.06.022}, pages = {182 -- 196}, year = {2018}, abstract = {Three spinel lherzolite xenoliths from Mt. Quincan (Queensland, northeastern Australia) were studied with special attention to their enclosed fluid inclusions. The xenoliths are deformed, have porphyroclastic textures and overall show very similar petrographic features. The only significant difference is manifested in the abundance of fluid inclusions in the samples, mostly in orthopyroxene porphyroclasts. Xenolith JMTQ11 is fluid inclusion-free, whereas xenolith JMTQ20 shows a high abundance of fluid inclusions (fluid inclusion-rich). Xenolith JMTQ45 represents a transitional state between the previous two, as it contains only a small amount of fluid inclusions (fluid inclusion-bearing). Previous studies revealed that these xenoliths and the entrapped fluid inclusions represent a former addition of a MORB-type fluid to the pre-existing lithosphere, resulting from asthenosphere upwelling. There is a progressive enrichment in LREE, Nb, Sr and Ti from the fluid inclusion-free xenolith through the fluid inclusion-bearing one to the fluid inclusion-rich lherzolite. This suggests an increase in the extent of the interaction between the fluid-rich melt and the lherzolite wallrock. In addition, the same interaction is considered to be responsible for the formation of pargasitic amphibole as well. The presence of fluid inclusions indicates fluid migration at mantle depth, and their association with exsolution lamellae in orthopyroxene suggests fluid entrapment following the continental rifting (thermal relaxation) during cooling. A series of analyses, including microthermometry coupled with Raman spectroscopy, FTIR hyperspectral imaging, and Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) was carried out on the fluid inclusions. Based on the results, the entrapped high-density fluid is composed of 7589 mol\% CO2, 918 mol\% H2O, 0.11.7 mol\% N-2 and <= 0.5 mol\% H2S with dissolved trace elements (melt component). Our findings suggest that the metasomatic fluid phase could have been either a fluid/fluid-rich silicate melt released from the deeper asthenosphere, or a coexisting incipient fluid-rich silicate melt. Further cooling, possibly due to thermal relaxation and the upward migration of the fluid phase, caused the investigated lherzolites to reach pargasite stability conditions. We conclude that pargasite, even if only present in very limited modal proportions, can be a common phase at spinel lherzolite stability in the lithospheric upper mantle in continental rift back-arc settings. Studies of fluid inclusions indicate that significant CO2 release from the asthenosphere in a continental rifting environment is resulting from asthenosphere upwelling and its addition to the lithospheric mantle together with fluid-rich melt lherzolite interaction that leaves a CO2-rich fluid behind.}, language = {en} } @article{CarvalhoBartoliFerrietal.2019, author = {Carvalho, Bruna B. and Bartoli, Omar and Ferri, Fabio and Cesare, Bernardo and Ferrero, Silvio and Remusat, Laurent and Capizzi, Luca Samuele and Poli, Stefano}, title = {Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)}, series = {Journal of metamorphic geology}, volume = {37}, journal = {Journal of metamorphic geology}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0263-4929}, doi = {10.1111/jmg.12463}, pages = {951 -- 975}, year = {2019}, abstract = {We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 mu m and are regularly distributed in the core of the garnet. Microstructural and micro-Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N-2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K-feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0-3.4 wt\%), contain 860-1700 ppm CO2 and reach the highest H2O contents (6.5-10 wt\%). In the transition zone melts have intermediate H2O (4.8-8.5 wt\%), CO2 (457-1534 ppm) and maficity (FeO + MgO = 2.3-3.9 wt\%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2-4.7 wt\%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4-8.3 wt\%) to the other two zones. Our results represent the first clear evidence for carbonic fluid-present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid-melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+-bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon-contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid-present melting of the deep continental crust represents, together with hydrate-breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.}, language = {en} } @misc{BorghiniFerreroO'Brienetal.2019, author = {Borghini, Alessia and Ferrero, Silvio and O'Brien, Patrick J. and Laurent, Oscar and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {Cryptic metasomatic agent measured in situ in Variscan mantle rocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {976}, issn = {1866-8372}, doi = {10.25932/publishup-47459}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474592}, pages = {207 -- 234}, year = {2019}, abstract = {Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschm{\"u}hle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Star{\´e}, Česk{\´e} Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.}, language = {en} } @article{BorghiniFerreroO’Brienetal.2019, author = {Borghini, Alessia and Ferrero, Silvio and O'Brien, Patrick J. and Laurent, Oscar and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {Cryptic metasomatic agent measured in situ in Variscan mantle rocks}, volume = {38}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {1525-1314}, doi = {10.1111/jmg.12519}, pages = {207 -- 234}, year = {2019}, abstract = {Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschm{\"u}hle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Star{\´e}, Česk{\´e} Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.}, language = {en} } @article{FerreroBorghiniWunderetal.2018, author = {Ferrero, Silvio and Borghini, Alessia and Wunder, Bernd and Walle, Markus and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {A treasure chest full of nanogranitoids}, series = {Metamorphic Geology: Microscale to Mountain Belts}, volume = {478}, journal = {Metamorphic Geology: Microscale to Mountain Belts}, publisher = {Geological Soc Publishing House}, address = {Bath}, isbn = {978-1-78620-400-4}, issn = {0305-8719}, doi = {10.1144/SP478.19}, pages = {13 -- 38}, year = {2018}, abstract = {The central European Bohemian Massif has undergone over two centuries of scientific investigation which has made it a pivotal area for the development and testing of modern geological theories. The discovery of melt inclusions in high-grade rocks, either crystallized as nanogranitoids or as glassy inclusions, prompted the re-evaluation of the area with an 'inclusionist' eye. Melt inclusions have been identified in a wide range of rocks, including felsic/perpotassic granulites, migmatites, eclogites and garnet clinopyroxenites, all the result of melting events albeit over a wide range of pressure/temperature conditions (800-1000°C/0.5-5 GPa). This contribution provides an overview of such inclusions and discusses the qualitative and quantitative constraints they provide for melting processes, and the nature of melts and fluids involved in these processes. In particular, data on trace-element signatures of melt inclusions trapped at mantle depths are presented and discussed. Moreover, experimental re-homogenization of nanogranitoids provided microstructural criteria allowing assessment of the conditions at which melt and host are mutually stable during melting. Overall this work aims to provide guidelines and suggestions for petrologists wishing to explore the fascinating field of melt inclusions in metamorphic terranes worldwide, based on the newest discoveries from the still-enigmatic Bohemian Massif.}, language = {en} }