@article{VaraoMouraAparecidoRosiniSilvaDomingosSantodaSilvaetal.2022, author = {Var{\~a}o Moura, Alexandre and Aparecido Rosini Silva, Alex and Domingos Santo da Silva, Jos{\´e} and Aleixo Leal Pedroza, Lucas and Bornhorst, Julia and Stiboller, Michael and Schwerdtle, Tanja and Gubert, Priscila}, title = {Determination of ions in Caenorhabditis elegans by ion chromatography}, series = {Journal of chromatography. B}, volume = {1204}, journal = {Journal of chromatography. B}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1570-0232}, doi = {10.1016/j.jchromb.2022.123312}, pages = {6}, year = {2022}, abstract = {The Caenorhabditis elegans (C. elegans) is a model organism that has been increasingly used in health and environmental toxicity assessments. The quantification of such elements in vivo can assist in studies that seek to relate the exposure concentration to possible biological effects. Therefore, this study is the first to propose a method of quantitative analysis of 21 ions by ion chromatography (IC), which can be applied in different toxicity studies in C. elegans. The developed method was validated for 12 anionic species (fluoride, acetate, chloride, nitrite, bromide, nitrate, sulfate, oxalate, molybdate, dichromate, phosphate, and perchlorate), and 9 cationic species (lithium, sodium, ammonium, thallium, potassium, magnesium, manganese, calcium, and barium). The method did not present the presence of interfering species, with R2 varying between 0.9991 and 0.9999, with a linear range from 1 to 100 mu g L-1. Limits of detection (LOD) and limits of quantification (LOQ) values ranged from 0.2319 mu g L-1 to 1.7160 mu g L-1 and 0.7028 mu g L-1 to 5.1999 mu g L-1, respectively. The intraday and interday precision tests showed an Relative Standard Deviation (RSD) below 10.0 \% and recovery ranging from 71.0 \% to 118.0 \% with a maximum RSD of 5.5 \%. The method was applied to real samples of C. elegans treated with 200 uM of thallium acetate solution, determining the uptake and bioaccumulated Tl+ content during acute exposure.}, language = {en} } @article{NicolaiWittFrieseetal.2022, author = {Nicolai, Merle Marie and Witt, Barbara and Friese, Sharleen and Michaelis, Vivien and H{\"o}lz-Armstrong, Lisa and Martin, Maximilian and Ebert, Franziska and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells}, series = {Food and chemical toxicology}, volume = {161}, journal = {Food and chemical toxicology}, publisher = {Elsevier}, address = {Oxford}, issn = {0278-6915}, doi = {10.1016/j.fct.2022.112822}, pages = {10}, year = {2022}, abstract = {Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes.}, language = {en} } @article{MichaelisAengenheisterTuchtenhagenetal.2022, author = {Michaelis, Vivien and Aengenheister, Leonie and Tuchtenhagen, Max and Rinklebe, J{\"o}rg and Ebert, Franziska and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Differences and interactions in placental manganese and iron transfer across an in vitro model of human villous trophoblasts}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms23063296}, pages = {18}, year = {2022}, abstract = {Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.}, language = {en} } @article{IjomoneIroegbuMorcilloetal.2022, author = {Ijomone, Omamuyovwi M. and Iroegbu, Joy D. and Morcillo, Patricia and Ayodele, Akinyemi J. and Ijomone, Olayemi K. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure}, series = {Environmental toxicology}, volume = {37}, journal = {Environmental toxicology}, number = {9}, publisher = {Wiley}, address = {New York, NY}, issn = {1520-4081}, doi = {10.1002/tox.23583}, pages = {2167 -- 2177}, year = {2022}, abstract = {Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.}, language = {en} } @inproceedings{MichaelisAengenheisterSchwerdtleetal.2021, author = {Michaelis, Vivien and Aengenheister, Leonie and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Manganese translocation across an in vitro model of human villous trophoblast}, series = {Placenta}, volume = {112}, booktitle = {Placenta}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0143-4004}, pages = {E63 -- E64}, year = {2021}, language = {en} } @article{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222010905}, pages = {16}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @article{KuhnTavaresJacquesTeixeiraetal.2021, author = {Kuhn, Eug{\^e}nia Carla and Tavares Jacques, Maur{\´i}cio and Teixeira, Daniela and Meyer, S{\"o}ren and Gralha, Thiago and Roehrs, Rafael and Camargo, Sandro and Schwerdtle, Tanja and Bornhorst, Julia and {\´A}vila, Daiana Silva}, title = {Ecotoxicological assessment of Uruguay River and affluents pre- and biomonitoring}, series = {Environmental science and pollution research : ESPR}, volume = {28}, journal = {Environmental science and pollution research : ESPR}, number = {17}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0944-1344}, doi = {10.1007/s11356-020-11986-4}, pages = {21730 -- 21741}, year = {2021}, abstract = {Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides' application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides' samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides' samples impaired C. elegans reproduction and post-pesticides samples reduced worms' survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides' application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety.}, language = {en} } @misc{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1173}, issn = {1866-8372}, doi = {10.25932/publishup-52327}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523275}, pages = {18}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @misc{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-51499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514995}, pages = {13}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Molecular Nutrition and Food Research}, volume = {65}, journal = {Molecular Nutrition and Food Research}, number = {8}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1613-4133}, doi = {10.1002/mnfr.202001176}, pages = {1 -- 11}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} }