@phdthesis{Baeckemo2022, author = {B{\"a}ckemo, Johan Dag Valentin}, title = {Digital tools and bioinspiration for the implementation in science and medicine}, doi = {10.25932/publishup-57145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571458}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 108}, year = {2022}, abstract = {Diese Doktorarbeit untersucht anhand dreier Beispiele, wie digitale Werkzeuge wie Programmierung, Modellierung, 3D-Konstruktions-Werkzeuge und additive Fertigung in Verbindung mit einer auf Biomimetik basierenden Design\-strategie zu neuen Analysemethoden und Produkten f{\"u}hren k{\"o}nnen, die in Wissenschaft und Medizin Anwendung finden. Das Verfahren der Funkenerosion (EDM) wird h{\"a}ufig angewandt, um harte Metalle zu verformen oder zu formen, die mit normalen Maschinen nur schwer zu bearbeiten sind. In dieser Arbeit wird eine neuartige Kr{\"u}mmungsanalysemethode als Alternative zur Rauheitsanalyse vorgestellt. Um besser zu verstehen, wie sich die Oberfl{\"a}che w{\"a}hrend der Bearbeitungszeit des EDM-Prozesses ver{\"a}ndert, wurde außerdem ein digitales Schlagmodell erstellt, das auf einem urspr{\"u}nglich flachen Substrat Krater auf Erhebungen erzeugte. Es wurde festgestellt, dass ein Substrat bei etwa 10.000 St{\"o}ßen ein Gleichgewicht erreicht. Die vorgeschlagene Kr{\"u}mmungsanalysemethode hat das Potenzial, bei der Entwicklung neuer Zellkultursubstrate f{\"u}r die Stammzellenforschung eingesetzt zu werden. Zwei Arten, die in dieser Arbeit aufgrund ihrer interessanten Mechanismen analysiert wurden, sind die Venusfliegenfalle und der Bandwurm. Die Venusfliegenfalle kann ihr Maul mit einer erstaunlichen Geschwindigkeit schließen. Der Schließmechanismus kann f{\"u}r die Wissenschaft interessant sein und ist ein Beispiel f{\"u}r ein so genanntes mechanisch bi-stabiles System - es gibt zwei stabile Zust{\"a}nde. Der Bandwurm ist bei S{\"a}ugetieren meist im unteren Darm zu finden und heftet sich mit seinen Saugn{\"a}pfen an die Darmw{\"a}nde. Wenn der Bandwurm eine geeignete Stelle gefunden hat, st{\"o}ßt er seine Haken aus und heftet sich dauerhaft an die Wand. Diese Funktion k{\"o}nnte in der minimalinvasiven Medizin genutzt werden, um eine bessere Kontrolle der Implantate w{\"a}hrend des Implantationsprozesses zu erm{\"o}glichen. F{\"u}r beide Projekte wurde ein mathematisches Modell, das so genannte Chained Beam Constraint Model (CBCM), verwendet, um das nichtlineare Biegeverhalten zu modellieren und somit vorherzusagen, welche Strukturen ein mechanisch bi-stabiles Verhalten aufweisen k{\"o}nnten. Daraufhin konnten zwei Prototypen mit einem 3D-Drucker gedruckt und durch Experimente veranschaulicht werden, dass sie beide ein bi-stabiles Verhalten aufweisen. Diese Arbeit verdeutlicht das hohe Anwendungspotenzial f{\"u}r neue Analysenmethoden in der Wissenschaft und f{\"u}r neue Medizinprodukte in der minimalinvasiven Medizin.}, language = {en} } @phdthesis{Kath2022, author = {Kath, Nadja Jeanette}, title = {Functional traits determine biomass dynamics, coexistence and energetics in plankton food webs}, doi = {10.25932/publishup-55123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-551239}, school = {Universit{\"a}t Potsdam}, pages = {197}, year = {2022}, abstract = {Plankton food webs are the basis of marine and limnetic ecosystems. Especially aquatic ecosystems of high biodiversity provide important ecosystem services for humankind as providers of food, coastal protection, climate regulation, and tourism. Understanding the dynamics of biomass and coexistence in these food webs is a first step to understanding the ecosystems. It also lays the foundation for the development of management strategies for the maintenance of the marine and freshwater biodiversity despite anthropogenic influences. Natural food webs are highly complex, and thus often equally complex methods are needed to analyse and understand them well. Models can help to do so as they depict simplified parts of reality. In the attempt to get a broader understanding of the complex food webs, diverse methods are used to investigate different questions. In my first project, we compared the energetics of a food chain in two versions of an allometric trophic network model. In particular, we solved the problem of unrealistically high trophic transfer efficiencies (up to 70\%) by accounting for both basal respiration and activity respiration, which decreased the trophic transfer efficiency to realistic values of ≤30\%. Next in my second project I turned to plankton food webs and especially phytoplankton traits. Investigating a long-term data set from Lake Constance we found evidence for a trade-off between defence and growth rate in this natural phytoplankton community. I continued working with this data set in my third project focusing on ciliates, the main grazer of phytoplankton in spring. Boosted regression trees revealed that temperature and predators have the highest influence on net growth rates of ciliates. We finally investigated in my fourth project a food web model inspired by ciliates to explore the coexistence of plastic competitors and to study the new concept of maladaptive switching, which revealed some drawbacks of plasticity: faster adaptation led to higher maladaptive switching towards undefended phenotypes which reduced autotroph biomass and coexistence and increased consumer biomass. It became obvious that even well-established models should be critically questioned as it is important not to forget reality on the way to a simplistic model. The results showed furthermore that long-term data sets are necessary as they can help to disentangle complex natural processes. Last, one should keep in mind that the interplay between models and experiments/ field data can deliver fruitful insights about our complex world.}, language = {en} } @article{RolphOverduinRavensetal.2022, author = {Rolph, Rebecca and Overduin, Pier Paul and Ravens, Thomas and Lantuit, Hugues and Langer, Moritz}, title = {ArcticBeach v1.0}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.962208}, pages = {19}, year = {2022}, abstract = {In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.}, language = {en} } @phdthesis{RodriguezPiceda2022, author = {Rodriguez Piceda, Constanza}, title = {Thermomechanical state of the southern Central Andes}, doi = {10.25932/publishup-54927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549275}, school = {Universit{\"a}t Potsdam}, pages = {xx, 228}, year = {2022}, abstract = {The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA.}, language = {en} } @article{AyzelHeistermann2021, author = {Ayzel, Georgy and Heistermann, Maik}, title = {The effect of calibration data length on the performance of a conceptual hydrological model versus LSTM and GRU}, series = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, volume = {149}, journal = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0098-3004}, doi = {10.1016/j.cageo.2021.104708}, pages = {12}, year = {2021}, abstract = {We systematically explore the effect of calibration data length on the performance of a conceptual hydrological model, GR4H, in comparison to two Artificial Neural Network (ANN) architectures: Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU), which have just recently been introduced to the field of hydrology. We implemented a case study for six river basins across the contiguous United States, with 25 years of meteorological and discharge data. Nine years were reserved for independent validation; two years were used as a warm-up period, one year for each of the calibration and validation periods, respectively; from the remaining 14 years, we sampled increasing amounts of data for model calibration, and found pronounced differences in model performance. While GR4H required less data to converge, LSTM and GRU caught up at a remarkable rate, considering their number of parameters. Also, LSTM and GRU exhibited the higher calibration instability in comparison to GR4H. These findings confirm the potential of modern deep-learning architectures in rainfall runoff modelling, but also highlight the noticeable differences between them in regard to the effect of calibration data length.}, language = {en} } @article{KocNathoThieken2021, author = {Ko{\c{c}}, Gamze and Natho, Stephanie and Thieken, Annegret}, title = {Estimating direct economic impacts of severe flood events in Turkey (2015-2020)}, series = {International journal of disaster risk reduction : IJDRR}, volume = {58}, journal = {International journal of disaster risk reduction : IJDRR}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4209}, doi = {10.1016/j.ijdrr.2021.102222}, pages = {16}, year = {2021}, abstract = {Over the past decades, floods have caused significant financial losses in Turkey, amounting to US\$ 800 million between 1960 and 2014. With the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR), it is aimed to reduce the direct economic loss from disasters in relation to the global gross domestic product (GDP) by 2030. Accordingly, a methodology based on experiences from developing countries was proposed by the United Nations Office for Disaster Risk Reduction (UNDRR) to estimate direct economic losses on the macro-scale. Since Turkey also signed the SFDRR, we aimed to adapt, validate and apply the loss estimation model proposed by the UNDRR in Turkey for the first time. To do so, the well-documented flood event in Mersin of 2016 was used to calibrate the damage ratios for the agricultural, commercial and residential sectors, as well as educational facilities. Case studies between 2015 and 2020 with documented losses were further used to validate the model. Finally, model applications provided initial loss estimates for floods occurred recently in Turkey. Despite the limited event documentation for each sector, the calibrated model yielded good results when compared to documented losses. Thus, by implementing the UNDRR method, this study provides an approach to estimate the direct economic losses in Turkey on the macro-scale, which can be used to fill gaps in event databases, support the coordination of financial aid after flood events and facilitate monitoring of the progress toward and achievement of Global Target C of the Sendai Framework for Disaster Risk Reduction 2015-2030.}, language = {en} } @article{StubningDenesGerhard2021, author = {Stubning, Tobias and Denes, Istvan and Gerhard, Reimund}, title = {Tuning electro-mechanical properties of EAP-based haptic actuators by adjusting layer thickness and number of stacked layers}, series = {Engineering research express}, volume = {3}, journal = {Engineering research express}, number = {1}, publisher = {Institute of Physics}, address = {London}, issn = {2631-8695}, doi = {10.1088/2631-8695/abd286}, pages = {13}, year = {2021}, abstract = {In our fast-changing world, human-machine interfaces (HMIs) are of ever-increasing importance. Among the most ubiquitous examples are touchscreens that most people are familiar with from their smartphones. The quality of such an HMI can be improved by adding haptic feedback-an imitation of using mechanical buttons-to the touchscreen. Thin-film actuators on the basis of electro-mechanically active polymers (EAPs), with the electroactive material sandwiched between two compliant electrodes, offer a promising technology for haptic surfaces. In thin-film technology, the thickness and the number of stacked layers of the electroactive dielectric are key parameters for tuning a system. Therefore, we have experimentally investigated the influence of the thickness of a single EAP layer on the electrical and the electro-mechanical performance of the transducer. In order to achieve high electro-mechanical actuator outputs, we have employed relaxor-ferroelectric ter-fluoropolymers that can be screen-printed. By means of a model-based approach, we have also directly compared single- and multi-layer actuators, thus providing guidelines for optimized transducer configurations with respect to the system requirements of haptic applications for which the operation frequency is of particular importance.}, language = {en} } @article{SimonPapadopoulosGuillemoteauetal.2021, author = {Simon, Fran{\c{c}}ois-Xavier and Papadopoulos, Nikos and Guillemoteau, Julien and Oikonomou, Dimitris and Simirdanis, Kleanthis}, title = {Multi-frequency loop electromagnetic system measurement on shallow offshore archaeological site of Oulos}, series = {ArcheoSciences : revue d'arch{\´e}om{\´e}trie / Groupe des M{\´e}thodes Pluridisciplinaires Contribuant {\`a} l'Arch{\´e}ologie (GMPCA)}, volume = {45}, journal = {ArcheoSciences : revue d'arch{\´e}om{\´e}trie / Groupe des M{\´e}thodes Pluridisciplinaires Contribuant {\`a} l'Arch{\´e}ologie (GMPCA)}, number = {1}, publisher = {Presses Universitaires de Rennes}, address = {Rennes}, issn = {1960-1360}, doi = {10.4000/archeosciences.9690}, pages = {215 -- 218}, year = {2021}, language = {en} } @article{MarschallSkorovZakharovetal.2020, author = {Marschall, Raphael and Skorov, Yuri and Zakharov, Vladimir and Rezac, Ladislav and Gerig, Selina-Barbara and Christou, Chariton and Dadzie, S. Kokou and Migliorini, Alessandra and Rinaldi, Giovanna and Agarwal, Jessica and Vincent, Jean-Baptiste and Kappel, David}, title = {Cometary comae-surface links the physics of gas and dust from the surface to a spacecraft}, series = {Space science reviews}, volume = {216}, journal = {Space science reviews}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-020-00744-0}, pages = {53}, year = {2020}, abstract = {A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.}, language = {en} } @phdthesis{Senftleben2020, author = {Senftleben, Robin}, title = {Earth's magnetic field over the last 1000 years}, doi = {10.25932/publishup-47315}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473150}, school = {Universit{\"a}t Potsdam}, pages = {xii, 104}, year = {2020}, abstract = {To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest.}, language = {en} }