@article{StoltnowLuedersGraafetal.2022, author = {Stoltnow, Malte and L{\"u}ders, Volker and Graaf, Stefan de and Niedermann, Samuel}, title = {A geochemical study of the Sweet Home mine, Colorado Mineral Belt, USA}, series = {Mineralium deposita : international journal for geology, mineralogy and geochemistry of mineral deposits}, volume = {57}, journal = {Mineralium deposita : international journal for geology, mineralogy and geochemistry of mineral deposits}, number = {5}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0026-4598}, doi = {10.1007/s00126-022-01102-6}, pages = {801 -- 825}, year = {2022}, abstract = {Deep hydrothermal Mo, W, and base metal mineralization at the Sweet Home mine (Detroit City portal) formed in response to magmatic activity during the Oligocene. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite suggest that the early-stage mineralization at the Sweet Home mine precipitated from low- to medium-salinity (1.5-11.5 wt\% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415 degrees C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by delta H-2(w)-delta O-18(w) relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home mine was triggered by a deep-seated magmatic intrusion. The findings of this study are in good agreement with the results of previous fluid inclusion studies of the mineralization of the Sweet Home mine and from Climax-type Mo porphyry deposits in the Colorado Mineral Belt.}, language = {en} } @article{LontsiGarciaJerezCamiloMolinaVillegasetal.2019, author = {Lontsi, Agostiny Marrios and Garcia-Jerez, Antonio and Camilo Molina-Villegas, Juan and Jose Sanchez-Sesma, Francisco and Molkenthin, Christian and Ohrnberger, Matthias and Kr{\"u}ger, Frank and Wang, Rongjiang and Fah, Donat}, title = {A generalized theory for full microtremor horizontal-to-vertical [H/V(z,f)] spectral ratio interpretation in offshore and onshore environments}, series = {Geophysical journal international}, volume = {218}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggz223}, pages = {1276 -- 1297}, year = {2019}, abstract = {Advances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers.}, language = {en} } @article{BaroniTarantola2014, author = {Baroni, Gabriele and Tarantola, S.}, title = {A general probabilistic framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study}, series = {Environmental modelling \& software with environment data news}, volume = {51}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2013.09.022}, pages = {26 -- 34}, year = {2014}, abstract = {The present study proposes a General Probabilistic Framework (GPF) for uncertainty and global sensitivity analysis of deterministic models in which, in addition to scalar inputs, non-scalar and correlated inputs can be considered as well. The analysis is conducted with the variance-based approach of Sobol/Saltelli where first and total sensitivity indices are estimated. The results of the framework can be used in a loop for model improvement, parameter estimation or model simplification. The framework is applied to SWAP, a 113 hydrological model for the transport of water, solutes and heat in unsaturated and saturated soils. The sources of uncertainty are grouped in five main classes: model structure (soil discretization), input (weather data), time-varying (crop) parameters, scalar parameters (soil properties) and observations (measured soil moisture). For each source of uncertainty, different realizations are created based on direct monitoring activities. Uncertainty of evapotranspiration, soil moisture in the root zone and bottom fluxes below the root zone are considered in the analysis. The results show that the sources of uncertainty are different for each output considered and it is necessary to consider multiple output variables for a proper assessment of the model. Improvements on the performance of the model can be achieved reducing the uncertainty in the observations, in the soil parameters and in the weather data. Overall, the study shows the capability of the GPF to quantify the relative contribution of the different sources of uncertainty and to identify the priorities required to improve the performance of the model. The proposed framework can be extended to a wide variety of modelling applications, also when direct measurements of model output are not available.}, language = {en} } @article{HerzschuhWinterWuennemannetal.2006, author = {Herzschuh, Ulrike and Winter, Katja and W{\"u}nnemann, Bernd and Li, Shijie}, title = {A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {154}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Pergamon Press}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2006.02.005}, pages = {113 -- 121}, year = {2006}, abstract = {A 741-cm-long laminated sediment core, covering the last 10,800 years was collected from Lake Zigetang, central Tibetan Plateau (90.9 degrees E, 32.0 degrees N, 4560m a.s.l.), and analysed palynologically at 69 horizons. Biome reconstruction suggests a dominance of temperate steppe vegetation (mainly Artemisia and Poaceae) on the central Tibetan Plateau during the first half of the Holocene (10.8-4.4 cal. ka BP), while alpine steppes with desert elements (mainly Cyperaceae, Poaceae, Chenopodiaceae, and characteristic high-alpine herb families) tend to dominate the second half (4.4-0 cal. ka BP). The Artemisia/Cyperaceae ratio-a semi-quantitative measure for summer temperature-indicates a general cooling trend throughout the Holocene. Dense temperate steppe vegetation and maximum desert plant withdrawal, however, indicate that a suitable balance of wet and warm conditions for optimum vegetation growth likely occurred during the middle Holocene (7.3-4.4 cal. ka BP). Severe Early Holocene cold events have been reconstructed for 8.7-8.3 and similar to 7.4 cal. ka BP. (c) 2006 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{MaerkerPelacaniSchroeder2011, author = {Maerker, Michael and Pelacani, Samanta and Schroeder, Boris}, title = {A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {125}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2010.10.022}, pages = {530 -- 540}, year = {2011}, abstract = {In this paper we evaluate different methods to predict soil erosion processes. We derived different layers of predictor variables for the study area in the Northern Chianti, Italy, describing the soil-lithologic complex, land use, and topographic characteristics. For a subcatchment of the Orme River, we mapped erosion processes by interpreting aerial photographs and field observations. These were classified as erosional response units (ERU), i.e. spatial areas of homogeneous erosion processes. The ERU were used as the response variable in the soil erosion modelling process. We applied two models i) bootstrap aggregation (Random Forest: RF), and ii) stochastic gradient boosting (TreeNet: TN) to predict the potential spatial distribution of erosion processes for the entire Orme River catchment. The models are statistically evaluated using training data and a set of performance parameters such as the area under the receiver operating characteristic curve (AUC), Cohen's Kappa, and pseudo R2. Variable importance and response curves provide further insight into controlling factors of erosion. Both models provided good performance in terms of classification and calibration; however, TN outperformed RF. Similar classes such as active and inactive landslides can be discriminated and well interpreted by considering response curves and relative variable importance. The spatial distribution of the predicted erosion susceptibilities generally follows topographic constraints and is similar for both models. Hence, the model-based delineation of ERU on the basis of soil and terrain information is a valuable tool in geomorphology; it provides insights into factors controlling erosion processes and may allow the extrapolation and prediction of erosion processes in unsurveyed areas.}, language = {en} } @article{BuschMeissnerPotthoffetal.2015, author = {Busch, Jan Philip and Meißner, Tobias and Potthoff, Annegret and Bleyl, Steffen and Georgi, Anett and Mackenzie, Katrin and Trabitzsch, Ralf and Werban, Ulrike and Oswald, Sascha}, title = {A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater}, series = {Journal of contaminant hydrology}, volume = {181}, journal = {Journal of contaminant hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-7722}, doi = {10.1016/j.jconhyd.2015.03.009}, pages = {59 -- 68}, year = {2015}, abstract = {The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 53 m in a confined, natural aquifer. The injection/extraction rate was 500 L/h. Approximately 12 kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12\% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @phdthesis{Muksin2014, author = {Muksin, Umar}, title = {A fault-controlled geothermal system in Tarutung (North Sumatra, Indonesia)investigated by seismological analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72065}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The seismic structure (Vp, Vp/Vs, and Qp anomalies) contributes to the physical properties and the lithology of rocks and possible fluid distribution in the region. The Vp model images the geometry of the Tarutung and the Sarulla basins. Both basins have a depth of around 2.0 km. High Vp/Vs and high attenuation (low Qp) anomalies are observed along the Sarulla graben associated with a weak zone caused by volcanic activities along the graben. Low Vp/Vs and low conductivity anomalies are found in the west of the Tarutung basin. This anomaly is interpreted as dry, compact, and rigid granitic rock in the region as also found by geological observations. Low Vp, high Vp/Vs and low Qp anomalies are found at the east of the Tarutung basin which appear to be associated with the three big geothermal manifestations in Sipoholon, Hutabarat, and Panabungan area. These anomalies are connected with high Vp/Vs and low Qp anomalies below the Tarutung basin at depth of around 3 - 10 km. This suggests that these geothermal manifestations are fed by the same source of the hot fluid below the Tarutung basin. The hot fluids from below the Tarutung basin propagate to the more dilatational and more permeable zone in the northeast. Granite found in the west of the Tarutung basin could also be abundant underneath the basin at a certain depth so that it prevents the hot fluid to be transported directly to the Tarutung basin. High seismic attenuation and low Vp/Vs anomalies are found in the southwest of the Tarutung basin below the Martimbang volcano. These anomalies are associated with hot rock below the volcano without or with less amount of partial melting. There is no indication that the volcano controls the geothermal system around the Tarutung basin. The geothermal resources around the Tarutung basin is a fault-controlled system as a result of deep circulation of fluids. Outside of the basin, the seismicity delineation and the focal mechanism correlate with the shape and the characteristics of the strike-slip Sumatran fault. Within the Tarutung basin, the seismicity is distributed more broadly which coincides with the margin of the basin. An extensional duplex system in the Tarutung basin is derived from the seismicity and focal mechanism analysis which is also consistent with the geological observations. The vertical distribution of the seismicity suggests the presence of a negative flower structure within the Tarutung basin.}, language = {de} } @article{HartmanGentzSchilleretal.2018, author = {Hartman, Jan F. and Gentz, Torben and Schiller, Amanda and Greule, Markus and Grossart, Hans-Peter and Ionescu, Danny and Keppler, Frank and Martinez-Cruz, Karla and Sepulveda-Jauregui, Armando and Isenbeck-Schroeter, Margot}, title = {A f ast and sensitive method for the continuous in situ determination of dissolved methane and its delta C-13-isotope ratio in surface waters}, series = {Limnology and Oceanography-methods}, volume = {16}, journal = {Limnology and Oceanography-methods}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10244}, pages = {273 -- 285}, year = {2018}, abstract = {A fast and sensitive method for the continuous determination of methane (CH4) and its stable carbon isotopic values (delta C-13-CH4) in surface waters was developed by applying a vacuum to a gas/liquid exchange membrane and measuring the extracted gases by a portable cavity ring-down spectroscopy analyser (M-CRDS). The M-CRDS was calibrated and characterized for CH4 concentration and delta C-13-CH4 with synthetic water standards. The detection limit of the M-CRDS for the simultaneous determination of CH4 and delta C-13-CH4 is 3.6 nmol L-1 CH4. A measurement precision of CH4 concentrations and delta C-13-CH4 in the range of 1.1\%, respectively, 1.7 parts per thousand (1 sigma) and accuracy (1.3\%, respectively, 0.8 parts per thousand [1 sigma]) was achieved for single measurements and averaging times of 10 min. The response time tau of 57 +/- 5 s allow determination of delta C-13-CH4 values more than twice as fast than other methods. The demonstrated M-CRDS method was applied and tested for Lake Stechlin (Germany) and compared with the headspace-gas chromatography and fast membrane CH4 concentration methods. Maximum CH4 concentrations (577 nmol L-1) and lightest delta C-13-CH4 (-35.2 parts per thousand) were found around the thermocline in depth profile measurements. The M-CRDS-method was in good agreement with other methods. Temporal variations in CH4 concentration and delta C-13-CH4 obtained in 24 h measurements indicate either local methane production/oxidation or physical variations in the thermocline. Therefore, these results illustrate the need of fast and sensitive analyses to achieve a better understanding of different mechanisms and pathways of CH4 formation in aquatic environments.}, language = {en} } @article{RachKahmenBraueretal.2017, author = {Rach, Oliver and Kahmen, Ansgar and Brauer, Achim and Sachse, Dirk}, title = {A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-13-741-2017}, pages = {741 -- 757}, year = {2017}, abstract = {Past climatic change can be reconstructed from sedimentary archives by a number of proxies. However, few methods exist to directly estimate hydrological changes and even fewer result in quantitative data, impeding our understanding of the timing, magnitude and mechanisms of hydrological changes. Here we present a novel approach based on delta H-2 values of sedimentary lipid biomarkers in combination with plant physiological modeling to extract quantitative information on past changes in relative humidity. Our initial application to an annually laminated lacustrine sediment sequence from western Europe deposited during the Younger Dryas cold period revealed relative humidity changes of up to 15\% over sub-centennial timescales, leading to major ecosystem changes, in agreement with palynological data from the region. We show that by combining organic geochemical methods and mechanistic plant physiological models on well characterized lacustrine archives it is possible to extract quantitative ecohydrological parameters from sedimentary lipid biomarker delta H-2 data.}, language = {en} } @article{JambrinaEnriquezSachseValeroGarces2016, author = {Jambrina-Enriquez, Margarita and Sachse, Dirk and Valero-Garces, Blas L.}, title = {A deglaciation and Holocene biomarker-based reconstruction of climate and environmental variability in NW Iberian Peninsula: the Sanabria Lake sequence}, series = {Journal of paleolimnolog}, volume = {56}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-016-9890-6}, pages = {49 -- 66}, year = {2016}, abstract = {The molecular biomarker composition of two sediment cores from Sanabria Lake (NW Iberian Peninsula) and a survey of modern plants in the watershed provide a reconstruction of past vegetation and landscape dynamics since deglaciation. During a proglacial stage in Lake Sanabria (prior to 14.7 cal ka BP), very low biomarker concentration and carbon preference index (CPI) values similar to 1 suggest that the n-alkanes could have derived from eroded ancient sediment sources or older organic matter with high degree of maturity. During the Late glacial (14.7-11.7 cal ka BP) and the Holocene (last 11.7 cal ka BP) intervals with higher biomarker and triterpenoid concentrations (high \%nC(29) , nC(31) alkanes), higher CPI and average carbon length (ACL), and lower P-aq (proportion of aquatic plants) are indicative of major contribution of vascular land plants from a more forested watershed (e.g. Mid Holocene period 7.0-4.0 cal ka BP). Lower biomarker concentrations (high \%nC(27) alkanes), CPI and ACL values responded to short phases with decreased allochthonous contribution into the lake that correspond to centennial-scale periods of regional forest decline (e.g. 4-3 ka BP, Roman deforestation after 2.0 ka, and some phases of the LIA, seventeenth-nineteenth centuries). Human activities in the watershed were significant during early medieval times (1.3-1.0 cal ka BP) and since 1960 CE, in both cases associated with relatively higher productivity stages in the lake (lower biomarker and triterpenoid concentrations, high \%nC(23) and \%nC(31) respectively, lower ACL and CPI values and higher P-aq). The lipid composition of Sanabria Lake sediments indicates a major allochthonous (watershed-derived) contribution to the organic matter budget since deglaciation, and a dominant oligotrophic status during the lake history. The study constrains the climate and anthropogenic forcings and watershed versus lake sources in organic matter accumulation processes and helps to design conservation and management policies in mountain, oligotrophic lakes.}, language = {en} }