@phdthesis{Cao2014, author = {Cao, Xianyong}, title = {Vegetation and climate change in eastern continental Asia during the last 22 ka inferred from pollen data synthesis}, pages = {156}, year = {2014}, language = {en} } @article{BenDorNeugebauerEnzeletal.2019, author = {Ben Dor, Yoav and Neugebauer, Ina and Enzel, Yehouda and Schwab, Markus Julius and Tjallingii, Rik and Erel, Yigal and Brauer, Achim}, title = {Varves of the Dead Sea sedimentary record}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {215}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.04.011}, pages = {173 -- 184}, year = {2019}, abstract = {The sedimentary record of the Dead Sea provides an exceptional high-resolution archive of past climate changes in the drought-sensitive eastern Mediterranean-Levant, a key region for the development of humankind at the boundary of global climate belts. Moreover, it is the only deep hypersaline lake known to have deposited long sequences of finely laminated, annually deposited sediments (i.e. varves) of varied compositions, including aragonite, gypsum, halite and clastic sediments. Vast efforts have been made over the years to decipher the environmental information stored in these evaporitic-clastic sequences spanning from the Pleistocene Lake Amora to the Holocene Dead Sea. A general characterisation of sediment facies has been derived from exposed sediment sections, as well as from shallow- and deep-water sediment cores. During high lake stands and episodes of positive water budget, mostly during glacial times, alternating aragonite and detritus laminae ('aad' facies) were accumulated, whereas during low lake stands and droughts, prevailing during interglacials, laminated detritus ('ld' facies) and laminated halite ('lh' facies) dominate the sequence. In this paper, we (i) review the three types of laminated sediments of the Dead Sea sedimentary record ('aad', 'ld' and 'lh' facies), (ii) discuss their modes of formation, deposition and accumulation, and their interpretation as varves, and (iii) illustrate how Dead Sea varves are utilized for palaeoclimate reconstructions and for establishing floating chronologies.}, language = {en} } @phdthesis{Schlolaut2013, author = {Schlolaut, Gordon}, title = {Varve and event layer chronology of Lake Suigetsu (Japan) back to 40 kyr BP and contribution to the international consensus atmospheric radiocarbon calibration curve}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69096}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The main intention of the PhD project was to create a varve chronology for the Suigetsu Varves 2006' (SG06) composite profile from Lake Suigetsu (Japan) by thin section microscopy. The chronology was not only to provide an age-scale for the various palaeo-environmental proxies analysed within the SG06 project, but also and foremost to contribute, in combination with the SG06 14C chronology, to the international atmospheric radiocarbon calibration curve (IntCal). The SG06 14C data are based on terrestrial leaf fossils and therefore record atmospheric 14C values directly, avoiding the corrections necessary for the reservoir ages of the marine datasets, which are currently used beyond the tree-ring limit in the IntCal09 dataset (Reimer et al., 2009). The SG06 project is a follow up of the SG93 project (Kitagawa \& van der Plicht, 2000), which aimed to produce an atmospheric calibration dataset, too, but suffered from incomplete core recovery and varve count uncertainties. For the SG06 project the complete Lake Suigetsu sediment sequence was recovered continuously, leaving the task to produce an improved varve count. Varve counting was carried out using a dual method approach utilizing thin section microscopy and micro X-Ray Fluorescence (µXRF). The latter was carried out by Dr. Michael Marshall in cooperation with the PhD candidate. The varve count covers 19 m of composite core, which corresponds to the time frame from ≈10 to ≈40 kyr BP. The count result showed that seasonal layers did not form in every year. Hence, the varve counts from either method were incomplete. This rather common problem in varve counting is usually solved by manual varve interpolation. But manual interpolation often suffers from subjectivity. Furthermore, sedimentation rate estimates (which are the basis for interpolation) are generally derived from neighbouring, well varved intervals. This assumes that the sedimentation rates in neighbouring intervals are identical to those in the incompletely varved section, which is not necessarily true. To overcome these problems a novel interpolation method was devised. It is computer based and automated (i.e. avoids subjectivity and ensures reproducibility) and derives the sedimentation rate estimate directly from the incompletely varved interval by statistically analysing distances between successive seasonal layers. Therefore, the interpolation approach is also suitable for sediments which do not contain well varved intervals. Another benefit of the novel method is that it provides objective interpolation error estimates. Interpolation results from the two counting methods were combined and the resulting chronology compared to the 14C chronology from Lake Suigetsu, calibrated with the tree-ring derived section of IntCal09 (which is considered accurate). The varve and 14C chronology showed a high degree of similarity, demonstrating that the novel interpolation method produces reliable results. In order to constrain the uncertainties of the varve chronology, especially the cumulative error estimates, U-Th dated speleothem data were used by linking the low frequency 14C signal of Lake Suigetsu and the speleothems, increasing the accuracy and precision of the Suigetsu calibration dataset. The resulting chronology also represents the age-scale for the various palaeo-environmental proxies analysed in the SG06 project. One proxy analysed within the PhD project was the distribution of event layers, which are often representatives of past floods or earthquakes. A detailed microfacies analysis revealed three different types of event layers, two of which are described here for the first time for the Suigetsu sediment. The types are: matrix supported layers produced as result of subaqueous slope failures, turbidites produced as result of landslides and turbidites produced as result of flood events. The former two are likely to have been triggered by earthquakes. The vast majority of event layers was related to floods (362 out of 369), which allowed the construction of a respective chronology for the last 40 kyr. Flood frequencies were highly variable, reaching their greatest values during the global sea level low-stand of the Glacial, their lowest values during Heinrich Event 1. Typhoons affecting the region represent the most likely control on the flood frequency, especially during the Glacial. However, also local, non-climatic controls are suggested by the data. In summary, the work presented here expands and revises knowledge on the Lake Suigetsu sediment and enabls the construction of a far more precise varve chronology. The 14C calibration dataset is the first such derived from lacustrine sediments to be included into the (next) IntCal dataset. References: Kitagawa \& van der Plicht, 2000, Radiocarbon, Vol 42(3), 370-381 Reimer et al., 2009, Radiocarbon, Vol 51(4), 1111-1150}, language = {en} } @phdthesis{Gholamrezaie2021, author = {Gholamrezaie, Ershad}, title = {Variations of lithospheric strength in different tectonic settings}, doi = {10.25932/publishup-51146}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511467}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 147}, year = {2021}, abstract = {Rheology describes the flow of matter under the influence of stress, and - related to solids- it investigates how solids subjected to stresses deform. As the deformation of the Earth's outer layers, the lithosphere and the crust, is a major focus of rheological studies, rheology in the geosciences describes how strain evolves in rocks of variable composition and temperature under tectonic stresses. It is here where deformation processes shape the form of ocean basins and mountain belts that ultimately result from the complex interplay between lithospheric plate motion and the susceptibility of rocks to the influence of plate-tectonic forces. A rigorous study of the strength of the lithosphere and deformation phenomena thus requires in-depth studies of the rheological characteristics of the involved materials and the temporal framework of deformation processes. This dissertation aims at analyzing the influence of the physical configuration of the lithosphere on the present-day thermal field and the overall rheological characteristics of the lithosphere to better understand variable expressions in the formation of passive continental margins and the behavior of strike-slip fault zones. The main methodological approach chosen is to estimate the present-day thermal field and the strength of the lithosphere by 3-D numerical modeling. The distribution of rock properties is provided by 3-D structural models, which are used as the basis for the thermal and rheological modeling. The structural models are based on geophysical and geological data integration, additionally constrained by 3-D density modeling. More specifically, to decipher the thermal and rheological characteristics of the lithosphere in both oceanic and continental domains, sedimentary basins in the Sea of Marmara (continental transform setting), the SW African passive margin (old oceanic crust), and the Norwegian passive margin (young oceanic crust) were selected for this study. The Sea of Marmara, in northwestern Turkey, is located where the dextral North Anatolian Fault zone (NAFZ) accommodates the westward escape of the Anatolian Plate toward the Aegean. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the lateral crustal heterogeneities is presented for the first time in this study. Here, I use different gravity datasets and the general non-uniqueness in potential field modeling, to propose three possible end-member scenarios of crustal configuration. The models suggest that pronounced gravitational anomalies in the basin originate from significant density heterogeneities within the crust. The rheological modeling reveals that associated variations in lithospheric strength control the mechanical segmentation of the NAFZ. Importantly, a strong crust that is mechanically coupled to the upper mantle spatially correlates with aseismic patches where the fault bends and changes its strike in response to the presence of high-density lower crustal bodies. Between the bends, mechanically weaker crustal domains that are decoupled from the mantle are characterized by creep. For the passive margins of SW Africa and Norway, two previously published 3-D conductive and lithospheric-scale thermal models were analyzed. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data, such as seismic observations and the gravity field. Here, the rheological modeling suggests that the present-day lithospheric strength across the oceanic domain is ultimately affected by the age and past thermal and tectonic processes as well as the depth of the thermal lithosphere-asthenosphere boundary, while the configuration of the crystalline crust dominantly controls the rheological behavior of the lithosphere beneath the continental domains of both passive margins. The thermal and rheological models show that the variations of lithospheric strength are fundamentally influenced by the temperature distribution within the lithosphere. Moreover, as the composition of the lithosphere significantly influences the present-day thermal field, it therefore also affects the rheological characteristics of the lithosphere. Overall my studies add to our understanding of regional tectonic deformation processes and the long-term behavior of sedimentary basins; they confirm other analyses that have pointed out that crustal heterogeneities in the continents result in diverse lithospheric thermal characteristics, which in turn results in higher complexity and variations of rheological behavior compared to oceanic domains with a thinner, more homogeneous crust.}, language = {en} } @article{BufeBurbankLiuetal.2017, author = {Bufe, Aaron and Burbank, Douglas W. and Liu, Langtao and Bookhagen, Bodo and Qin, Jintang and Chen, Jie and Li, Tao and Jobe, Jessica Ann Thompson and Yang, Huili}, title = {Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF004099}, pages = {2431 -- 2467}, year = {2017}, abstract = {Fluvial planation surfaces, such as straths, commonly serve as recorders of climatic and tectonic changes and are formed by the lateral erosion of rivers, a process that remains poorly understood. Here we present a study of kilometer-wide, fluvially eroded, low-relief surfaces on rapidly uplifting folds in the foreland of the southwestern Tian Shan. A combination of field work, digital elevation model analysis, and dating of fluvial deposits reveals that despite an arid climate and rapid average rock-uplift rates of 1-3mm/yr, rivers cut extensive (>1-2km wide) surfaces with typical height variations of <6m over periods of >2-6kyr. The extent of this beveling varies in space and time, such that different beveling episodes affect individual structures. Between times of planation, beveled surfaces are abandoned, incised, and deformed across the folds. In a challenge to models that link strath cutting and abandonment primarily to changes in river incision rates, we demonstrate that lateral erosion rates of antecedent streams crossing the folds have to vary by more than 1 order of magnitude to explain the creation of beveled platforms in the past and their incision at the present day. These variations do not appear to covary with climate variability and might be caused by relatively small (much less than an order of magnitude) changes in sediment or water fluxes. It remains uncertain in which settings variations in lateral bedrock erosion rates predominate over changes in vertical erosion rates. Therefore, when studying fluvial planation and strath terraces, variability of both lateral and vertical erosion rates should be considered.}, language = {en} } @article{MengesHoviusAndermannetal.2020, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Lupker, Maarten and Haghipour, Negar and M{\"a}rki, Lena and Sachse, Dirk}, title = {Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {286}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {New York [u.a.]}, issn = {0016-7037}, doi = {10.1016/j.gca.2020.07.003}, pages = {159 -- 176}, year = {2020}, abstract = {Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates.}, language = {en} } @article{KaufmannHoffmannBachmannetal.2019, author = {Kaufmann, Felix E. D. and Hoffmann, Marie C. and Bachmann, Kai and Veksler, Ilya V. and Trumbull, Robert B. and Hecht, Lutz}, title = {Variations in Composition, Texture, and Platinum Group Element Mineralization in the Lower Group and Middle Group Chromitites of the Northwestern Bushveld Complex, South Africa}, series = {Economic geology}, volume = {114}, journal = {Economic geology}, number = {3}, publisher = {The Economic Geology Publ. Co}, address = {Littleton}, issn = {0361-0128}, doi = {10.5382/econgeo.4641}, pages = {569 -- 590}, year = {2019}, abstract = {Small-scale variations in mineral chemistry, textures, and platinum group element (PGE) mineralization were investigated in the Lower and Middle Group chromitite layers LG6, LG6a, MG1, MG2, and MG2 II from vertical drill core profiles at the Thaba mine in the northwestern limb of the Bushveld Complex. We present detailed geochemical profiles of chromite composition and chromite crystal size distribution curves to shed light on the processes of chromite accumulation and textural modification as well as mineralization. Multiple samples within each layer were assayed for PGE concentrations, and the respective platinum group mineral association was determined by mineral liberation analysis (MLA). There is strong evidence for postcumulus changes in the chromitites. The crystal size distribution curves suggest that the primary chromite texture was coarsened by a combination of adcumulus growth and textural equilibration, while compaction of the crystal mush played only a minor role. Mineral compositions were also modified by postcumulus processes, but because of the very high modal amount of chromite and its local preservation in orthopyroxene oikocrysts, that phase retained much primary information. Vertical variations of chromite composition within chromitite layers and from one layer to another do not support the idea of chromite accumulation from crystal-rich slurries or crystal settling from a large magma chamber. Instead, we favor a successive buildup of chromitite layers by repeated injections of relatively thin layers of chromite-saturated magmas, with in situ crystallization occurring at the crystal mush-magma interface. The adcumulus growth of chromite grains to form massive chromitite required addition of Cr to the layers, which we attribute to downward percolation from the overlying magma. The PGE concentrations are elevated in all chromitite layers compared to adjacent silicate rocks and show a systematic increase upward from LG6 (avg 807 ppb Ir + Ru + Rh + Pt + Pd + Au) to MG2 II (avg 2,062 ppb). There are also significant internal variations in all layers, with enrichments at hanging and/or footwalls. The enriched nature of chromitites in PGEs compared to host pyroxenites is a general feature, independent of the layer thickness. The MLA results distinguish two principal groups of PGE mineral associations: the LG6, LG6, and MG1 are dominated by the malanite series, laurite, and PGE sulfarsenides, while the MG2 and MG2 II layers are characterized by laurite and PGE sulfides as well as Pt-Fe-Sn and PGE-Sb-Bi-Pb alloys. Differences in the PGE associations are attributed to postcumulus alteration of the MG2 and MG2 II layer, while the chromitites below, particularly LG6 and LG6a, contain a more pristine association.}, language = {en} } @article{CoesfeldAndersonBaughetal.2018, author = {Coesfeld, Jacqueline and Anderson, Sharolyn J. and Baugh, Kimberly and Elvidge, Christopher D. and Schernthanner, Harald and Kyba, Christopher C. M.}, title = {Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10121964}, pages = {17}, year = {2018}, abstract = {With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15-20\% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes.}, language = {en} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{Schneider1991, author = {Schneider, Ingo}, title = {Variante Pflanzen aus Gewebekulturen : Mutation oder epigenetische Ver{\"a}nderungen?}, year = {1991}, language = {de} }