@article{CookTurowskiHovius2020, author = {Cook, Kristen L. and Turowski, Jens M. and Hovius, Niels}, title = {Width control on event-scale deposition and evacuation of sediment in bedrock-confined channels}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {45}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {14}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4993}, pages = {3702 -- 3713}, year = {2020}, abstract = {In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20-50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph.}, language = {en} } @article{MuldashevSobolev2020, author = {Muldashev, Iskander A. and Sobolev, Stephan}, title = {What controls maximum magnitudes of giant subduction earthquakes?}, series = {Geochemistry, geophysics, geosystems}, volume = {21}, journal = {Geochemistry, geophysics, geosystems}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2020GC009145}, pages = {15}, year = {2020}, abstract = {Giant earthquakes with magnitudes above 8.5 occur only in subduction zones. Despite the developments made in observing large subduction zone earthquakes with geophysical instruments, the factors controlling the maximum size of these earthquakes are still poorly understood. Previous studies have suggested the importance of slab shape, roughness of the plate interface contact, state of the strain in the upper plate, thickness of sediments filling the trenches, and subduction rate. Here, we present 2-D cross-scale numerical models of seismic cycles for subduction zones with various geometries, subduction channel friction configurations, and subduction rates. We found that low-angle subduction and thick sediments in the subduction channel are the necessary conditions for generating giant earthquakes, while the subduction rate has a negligible effect. We suggest that these key parameters determine the maximum magnitude of a subduction earthquake by controlling the seismogenic zone width and smoothness of the subduction interface. This interpretation supports previous studies that are based upon observations and scaling laws. Our modeling results also suggest that low static friction in the sediment-filled subduction channel results in neutral or moderate compressive deformation in the overriding plate for low-angle subduction zones hosting giant earthquakes. These modeling results agree well with observations for the largest earthquakes. Based on our models we predict maximum magnitudes of subduction earthquakes worldwide, demonstrating the fit to magnitudes of all giant earthquakes of the 20th and 21st centuries and good agreement with the predictions based on statistical analyses of observations.}, language = {en} } @article{GlerumBruneStampsetal.2020, author = {Glerum, Anne and Brune, Sascha and Stamps, D. Sarah and Strecker, Manfred}, title = {Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-16176-x}, pages = {15}, year = {2020}, abstract = {The Victoria microplate between the Eastern and Western Branches of the East African Rift System is one of the largest continental microplates on Earth. In striking contrast to its neighboring plates, Victoria rotates counterclockwise with respect to Nubia. The underlying cause of this distinctive rotation has remained elusive so far. Using 3D numerical models, we investigate the role of pre-existing lithospheric heterogeneities in continental microplate rotation. We find that Victoria's rotation is primarily controlled by the distribution of rheologically stronger zones that transmit the drag of the major plates to the microplate and of the mechanically weaker mobile belts surrounding Victoria that facilitate rotation. Our models reproduce Victoria's GPS-derived counterclockwise rotation as well as key complexities of the regional tectonic stress field. These results reconcile competing ideas on the opening of the rift system by highlighting differences in orientation of the far-field divergence, local extension, and the minimum horizontal stress. One of the largest continental microplates on Earth is situated in the center of the East African Rift System, and oddly, the Victoria microplate rotates counterclockwise with respect to the neighboring African tectonic plate. Here, the authors' modelling results suggest that Victoria microplate rotation is caused by edge-driven lithospheric processes related to the specific geometry of rheologically weak and strong regions.}, language = {en} } @article{MengesHoviusAndermannetal.2020, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Lupker, Maarten and Haghipour, Negar and M{\"a}rki, Lena and Sachse, Dirk}, title = {Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {286}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {New York [u.a.]}, issn = {0016-7037}, doi = {10.1016/j.gca.2020.07.003}, pages = {159 -- 176}, year = {2020}, abstract = {Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates.}, language = {en} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{RacanoJaraMunozCosentinoetal.2020, author = {Racano, Simone and Jara Mu{\~n}oz, Julius and Cosentino, Domenico and Melnick, Daniel}, title = {Variable quaternary uplift along the Southern Margin of the Central Anatolian Plateau inferred from modeling Marine Terrace sequences}, series = {Tectonics}, volume = {39}, journal = {Tectonics}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2019TC005921}, pages = {22}, year = {2020}, abstract = {The southern margin of the Central Anatolian Plateau (CAP) records a strong uplift phase after the early Middle Pleistocene, which has been related to the slab break-off of the subducting Arabian plate beneath the Anatolian microplate. During the last 450 kyr the area underwent an uplift phase at a mean rate of similar to 3.2 m/kyr, as suggested by Middle Pleistocene marine sediments exposed at similar to 1,500 m above sea level. These values are significantly higher than the 1.0-1.5 m/kyr estimated since the Late Pleistocene, suggesting temporal variations in uplift rate. To estimate changes in uplift rate during the Pleistocene we studied the marine terraces along the CAP southern margin, mapping the remnants of the platforms and their associated deposits in the field, and used the TerraceM software to identify the position and elevation of associated shoreline angles. We used shoreline angles and the timing of Quaternary marine sedimentation as constrains for a Landscape Evolution Model that simulates wave erosion of an uplifting coast. We applied random optimization algorithms and minimization statistics to find the input parameters that better reproduce the morphology of CAP marine terraces. The best-fitting uplift rate history suggests a significative increase from 1.9 to 3.5 m/kyr between 500 and 200 kyr, followed by an abrupt decrease to 1.4 m/kyr until the present. Our results agree with slab break-off models, which suggest a strong uplift pulse during slab rupture followed by a smoother decrease.}, language = {en} } @misc{CrisologoHeistermann2020, author = {Crisologo, Irene and Heistermann, Maik}, title = {Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {863}, issn = {1866-8372}, doi = {10.25932/publishup-45963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459630}, pages = {17}, year = {2020}, abstract = {Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.}, language = {en} } @article{CrisologoHeistermann2020, author = {Crisologo, Irene and Heistermann, Maik}, title = {Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms}, series = {Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union}, volume = {13}, journal = {Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1867-1381}, doi = {10.5194/amt-13-645-2020}, pages = {645 -- 659}, year = {2020}, abstract = {Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.}, language = {en} } @article{CrisologoHeistermann2020, author = {Crisologo, Irene and Heistermann, Maik}, title = {Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms}, series = {Atmospheric Measurement Techniques}, volume = {13}, journal = {Atmospheric Measurement Techniques}, number = {2}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1867-1381}, doi = {10.5194/amt-13-645-2020}, pages = {645 -- 659}, year = {2020}, abstract = {Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.}, language = {en} } @article{PradhanKriewaldCostaetal.2020, author = {Pradhan, Prajal and Kriewald, Steffen and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Rybski, Diego and Benton, Tim G. and Fischer, G{\"u}nther and Kropp, J{\"u}rgen}, title = {Urban food systems: how regionalization can contribute to climate change mitigation}, series = {Environmental science \& technology}, volume = {54}, journal = {Environmental science \& technology}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.0c02739}, pages = {10551 -- 10560}, year = {2020}, abstract = {Cities will play a key role in the grand challenge of nourishing a growing global population, because, due to their population density, they set the demand. To ensure that food systems are sustainable, as well as nourishing, one solution often suggested is to shorten their supply chains toward a regional rather than a global basis. While such regional systems may have a range of costs and benefits, we investigate the mitigation potential of regionalized urban food systems by examining the greenhouse gas emissions associated with food transport. Using data on food consumption for 7108 urban administrative units (UAUs), we simulate total transport emissions for both regionalized and globalized supply chains. In regionalized systems, the UAUs' demands are fulfilled by peripheral food production, whereas to simulate global supply chains, food demand is met from an international pool (where the origin can be any location globally). We estimate that regionalized systems could reduce current emissions from food transport. However, because longer supply chains benefit from maximizing comparative advantage, this emission reduction would require closing yield gaps, reducing food waste, shifting toward diversified farming, and consuming seasonal produce. Regionalization of food systems will be an essential component to limit global warming to well below 2 degrees C in the future.}, language = {en} }