@article{LiShenZhangetal.2022, author = {Li, Jian and Shen, Jinhua and Zhang, Xiaoli and Peng, Yangqin and Zhang, Qin and Hu, Liang and Reichetzeder, Christoph and Zeng, Suimin and Li, Jing and Tian, Mei and Gong, Fei and Lin, Ge and Hocher, Berthold}, title = {Risk factors associated with preterm birth after IVF/ICSI}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-12149-w}, pages = {9}, year = {2022}, abstract = {In vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is associated with an increased risk of preterm (33rd-37th gestational week) and early preterm birth (20th-32nd gestational week). The underlying general and procedure related risk factors are not well understood so far. 4328 infertile women undergoing IVF/ICSI were entered into this study. The study population was divided into three groups: (a) early preterm birth group (n = 66), (b) preterm birth group (n = 675) and (c) full-term birth group (n = 3653). Odds for preterm birth were calculated by stepwise multivariate logistic regression analysis. We identified seven independent risk factors for preterm birth and four independent risk factors for early preterm birth. Older (> 39) or younger (< 25) maternal age (OR: 1.504, 95\% CI 1.108-2.042, P = 0.009; OR: 2.125, 95\% CI 1.049-4.304, P = 0.036, respectively), multiple pregnancy (OR: 9.780, 95\% CI 8.014-11.935, P < 0.001; OR: 8.588, 95\% CI 4.866-15.157, P < 0.001, respectively), placenta previa (OR: 14.954, 95\% CI 8.053-27.767, P < 0.001; OR: 16.479, 95\% CI 4.381-61.976, P < 0.001, respectively), and embryo reduction (OR: 3.547, 95\% CI 1.736-7.249, P = 0.001; OR: 7.145, 95\% CI 1.990-25.663, P = 0.003, respectively) were associated with preterm birth and early preterm birth, whereas gestational hypertension (OR: 2.494, 95\% CI 1.770-3.514, P < 0.001), elevated triglycerides (OR: 1.120, 95\% CI 1.011-1.240, P = 0.030) and shorter activated partial thromboplastin time (OR: 0.967, 95\% CI 0.949-0.985, P < 0.001) were associated only with preterm birth. In conclusion, preterm and early preterm birth risk factors in patients undergoing assisted IVF/ICSI are in general similar to those in natural pregnancy. The lack of some associations in the early preterm group was most likely due to the lower number of early preterm birth cases. Only embryo reduction represents an IVF/ICSI specific risk factor.}, language = {en} } @article{HocherLuReichetzederetal.2022, author = {Hocher, Berthold and Lu, Yong-Ping and Reichetzeder, Christoph and Zhang, Xiaoli and Tsuprykov, Oleg and Rahnenf{\"u}hrer, Jan and Xie, Li and Li, Jian and Hu, Liang and Kr{\"a}mer, Bernhard K. and Hasan, Ahmed A.}, title = {Paternal eNOS deficiency in mice affects glucose homeostasis and liver glycogen in male offspring without inheritance of eNOS deficiency itself}, series = {Diabetologia}, volume = {65}, journal = {Diabetologia}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-022-05700-x}, pages = {1222 -- 1236}, year = {2022}, abstract = {Aims/hypothesis It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the offspring's phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS deficiency. Methods Heterozygous (+/-) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice. The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type parents. Results Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose and liver glycogen storage were increased when analysing wild-type male and female offspring of +/- eNOS fathers. Wild-type male but not female offspring of +/- eNOS fathers had increased fasting insulin and increased insulin after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/- eNOS fathers. The endocrine pancreas in wild-type offspring was not affected.
Conclusions/interpretation Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/- eNOS fathers developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and Pgc1a gene expression due to altered methylation of these genes.}, language = {en} } @misc{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516289}, pages = {12}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} } @article{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-57725-0}, pages = {1 -- 10}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} } @article{PedroErnestodaSilvaRochaGomesetal.2022, author = {Pedro Ernesto, Pinho Tavares Leal and da Silva, Alexandre Alves and Rocha-Gomes, Arthur and Riul, Tania Regina and Cunha, Rennan Augusto and Reichetzeder, Christoph and Villela, Daniel Campos}, title = {High-salt diet in the pre- and postweaning periods leads to amygdala oxidative stress and changes in locomotion and anxiety-like behaviors of male wistar rats}, series = {Frontiers in behavioral neuroscience}, volume = {15}, journal = {Frontiers in behavioral neuroscience}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2021.779080}, pages = {12}, year = {2022}, abstract = {High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)-offspring of standard diet fed dams who received a standard diet after weaning (n = 9-11), control-HS (C-HS)-offspring of standard diet fed dams who received a HS diet after weaning (n = 9-11), HS-C-offspring of HS diet fed dams who received a standard diet after weaning (n = 9-11), and HS-HS-offspring of HS diet fed dams who received a HS diet after weaning (n = 9-11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.}, language = {en} } @article{Reichetzeder2021, author = {Reichetzeder, Christoph}, title = {Overweight and obesity in pregnancy}, series = {European journal of clinical nutrition}, volume = {75}, journal = {European journal of clinical nutrition}, number = {12}, publisher = {Springer Nature}, address = {London}, issn = {0954-3007}, doi = {10.1038/s41430-021-00905-6}, pages = {1710 -- 1722}, year = {2021}, abstract = {Over the last few decades, the prevalence of obesity has risen to epidemic proportions worldwide. Consequently, the number of obesity in pregnancy has risen drastically. Gestational overweight and obesity are associated with impaired outcomes for mother and child. Furthermore, studies show that maternal obesity can lead to long-term consequences in the offspring, increasing the risk for obesity and cardiometabolic disease in later life. In addition to genetic mechanisms, mounting evidence demonstrates the induction of epigenetic alterations by maternal obesity, which can affect the offspring's phenotype, thereby influencing the later risk of obesity and cardiometabolic disease. Clear evidence in this regard comes from various animal models of maternal obesity. Evidence derived from clinical studies remains limited. The current article gives an overview of pathophysiological changes associated with maternal obesity and their consequences on placental structure and function. Furthermore, a short excurse is given on epigenetic mechanisms and emerging data regarding a putative interaction between metabolism and epigenetics. Finally, a summary of important findings of animal and clinical studies investigating maternal obesity-related epigenetic effects is presented also addressing current limitations of clinical studies.}, language = {en} } @article{ReichetzederHeunischvonEinemetal.2017, author = {Reichetzeder, Christoph and Heunisch, Fabian and von Einem, Gina-Franziska and Tsuprykov, Oleg and Kellner, Karl-Heinz and Dschietzig, Thomas and Kretschmer, Axel and Hocher, Berthold}, title = {Pre-interventional kynurenine predicts medium-term outcome after contrast media exposure due to coronary angiography}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, volume = {42}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000477222}, pages = {244 -- 256}, year = {2017}, abstract = {Background/Aims: Contrast induced acute kidney injury (CI-AKI) remains a serious complication of contrast media enhanced procedures like coronary angiography. There is still a lack of established biomarkers that help to identify patients at high risk for short and long-term complications. The aim of the current study was to evaluate plasma kynurenine as a predictive biomarker for CI-AKI and long-term complications, measured by the combined endpoint "major adverse kidney events" (MAKE) up to 120 days after CM application. Methods: In this prospective cohort study 245 patients undergoing coronary angiography were analyzed. Blood samples were obtained at baseline, 24h and 48h after contrast media (CM) application to diagnose CI-AKI. Patients were followed for 120 days for adverse clinical events including death, the need for dialysis, and a doubling of plasma creatinine. Occurrence of any of these events was summarized in the combined endpoint MAKE. Results: Preinterventional plasma kynurenine was not associated with CI-AKI. Patients who later developed MAKE displayed significantly increased preinterventional plasma kynurenine levels (p<0.0001). ROC analysis revealed that preinterventional kynurenine is highly predictive for MAKE (AUC=0.838; p<0.0001). The optimal cutoff was found at >= 3.5 mu mol/L. Using this cutoff, the Kaplan-Meier estimator demonstrated that concentrations of plasma kynurenine >= 3.5 mu mol/L were significantly associated with a higher prevalence of MAKE until follow up (p<0.0001). This association remained significant in multivariate Cox regression models adjusted for relevant factors of long-term renal outcome. Conclusion: Preinterventional plasma kynurenine might serve as a highly predictive biomarker for MAKE up to 120 days after coronary angiography.}, language = {en} } @misc{dePinhoTavaresLealdaSilvaRochaGomesetal.2021, author = {de Pinho Tavares Leal, Pedro Ernesto and da Silva, Alexandre Alves and Rocha-Gomes, Arthur and Riul, Tania Regina and Cunha, Rennan Augusto and Reichetzeder, Christoph and Villela, Daniel Campos}, title = {High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55743}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557432}, pages = {1 -- 12}, year = {2021}, abstract = {High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9-11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9-11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9-11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9-11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.}, language = {en} } @article{dePinhoTavaresLealdaSilvaRochaGomesetal.2021, author = {de Pinho Tavares Leal, Pedro Ernesto and da Silva, Alexandre Alves and Rocha-Gomes, Arthur and Riul, Tania Regina and Cunha, Rennan Augusto and Reichetzeder, Christoph and Villela, Daniel Campos}, title = {High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats}, series = {Frontiers in Behavioral Neuroscience}, volume = {15}, journal = {Frontiers in Behavioral Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1662-5153}, doi = {10.3389/fnbeh.2021.779080}, pages = {1 -- 12}, year = {2021}, abstract = {High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9-11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9-11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9-11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9-11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.}, language = {en} } @misc{ReichetzederHocher2017, author = {Reichetzeder, Christoph and Hocher, Berthold}, title = {DPP4 inhibition prevents AKI}, series = {Oncotarget}, volume = {8}, journal = {Oncotarget}, publisher = {Impact Journals LLC}, address = {Orchard Park}, issn = {1949-2553}, doi = {10.18632/oncotarget.20212}, pages = {64655 -- 64656}, year = {2017}, language = {en} }