@article{DimigenKlieglSommer2012, author = {Dimigen, Olaf and Kliegl, Reinhold and Sommer, Werner}, title = {Trans-saccadic parafoveal preview benefits in fluent reading: A study with fixation-related brain potentials}, series = {NeuroImage : a journal of brain function}, volume = {62}, journal = {NeuroImage : a journal of brain function}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2012.04.006}, pages = {381 -- 393}, year = {2012}, abstract = {During natural reading, a parafoveal preview of the upcoming word facilitates its subsequent recognition (e.g., shorter fixation durations compared to masked preview) but nothing is known about the neural correlates of this so-called preview benefit. Furthermore, while the evidence is strong that readers preprocess orthographic features of upcoming words, it is controversial whether word meaning can also be accessed parafoveally. We investigated the timing, scope, and electrophysiological correlates of parafoveal information use in reading by simultaneously recording eye movements and fixation-related brain potentials (FRPs) while participants read word lists fluently from left to right. For one word the target (e.g., "blade") parafoveal information was manipulated by showing an identical ("blade"), semantically related ("knife"), or unrelated ("sugar") word as preview. In boundary trials, the preview was shown parafoveally but changed to the correct target word during the incoming saccade. Replicating classic findings, target words were fixated shorter after identical previews. In the EEG, this benefit was reflected in an occipitotemporal preview positivity between 200 and 280 ms. In contrast, there was no facilitation from related previews. In parafoveal-on-foveal trials, preview and target were embedded at neighboring list positions without a display change. Consecutive fixation of two related words produced N400 priming effects, but only shortly (160 ms) after the second word was directly fixated. Results demonstrate that neural responses to words are substantially altered by parafoveal preprocessing under normal reading conditions. We found no evidence that word meaning contributes to these effects. Saccade-contingent display manipulations can be combined with EEG recordings to study extrafoveal perception in vision.}, language = {en} }