@misc{KrasotkinaGoetzHoehleetal.2018, author = {Krasotkina, Anna and G{\"o}tz, Antonia and H{\"o}hle, Barbara and Schwarzer, Gudrun}, title = {Perceptual narrowing in speech and face recognition}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {639}, issn = {1866-8364}, doi = {10.25932/publishup-45918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459180}, pages = {7}, year = {2018}, abstract = {During the first year of life, infants undergo perceptual narrowing in the domains of speech and face perception. This is typically characterized by improvements in infants' abilities in discriminating among stimuli of familiar types, such as native speech tones and same-race faces. Simultaneously, infants begin to decline in their ability to discriminate among stimuli of types with which they have little experience, such as nonnative tones and other-race faces. The similarity in time-frames during which perceptual narrowing seems to occur in the domains of speech and face perception has led some researchers to hypothesize that the perceptual narrowing in these domains could be driven by shared domain-general processes. To explore this hypothesis, we tested 53 Caucasian 9-month-old infants from monolingual German households on their ability to discriminate among non-native Cantonese speech tones, as well among same-race German faces and other-race Chinese faces. We tested the infants using an infant-controlled habituation-dishabituation paradigm, with infants' preferences for looking at novel stimuli versus the habituated stimuli (dishabituation scores) acting as indicators of discrimination ability. As expected for their age, infants were able to discriminate between same-race faces, but not between other-race faces or non-native speech tones. Most interestingly, we found that infants' dishabituation scores for the non-native speech tones and other-race faces showed significant positive correlations, while the dishabituation scores for non-native speech tones and same-race faces did not. These results therefore support the hypothesis that shared domain-general mechanisms may drive perceptual narrowing in the domains of speech and face perception.}, language = {en} } @misc{BollAvetisyanBhataraHoehle2020, author = {Boll-Avetisyan, Natalie and Bhatara, Anjali and H{\"o}hle, Barbara}, title = {Processing of rhythm in speech and music in adult dyslexia}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {630}, issn = {1866-8364}, doi = {10.25932/publishup-46978}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469781}, pages = {28}, year = {2020}, abstract = {Recent studies have suggested that musical rhythm perception ability can affect the phonological system. The most prevalent causal account for developmental dyslexia is the phonological deficit hypothesis. As rhythm is a subpart of phonology, we hypothesized that reading deficits in dyslexia are associated with rhythm processing in speech and in music. In a rhythmic grouping task, adults with diagnosed dyslexia and age-matched controls listened to speech streams with syllables alternating in intensity, duration, or neither, and indicated whether they perceived a strong-weak or weak-strong rhythm pattern. Additionally, their reading and musical rhythm abilities were measured. Results showed that adults with dyslexia had lower musical rhythm abilities than adults without dyslexia. Moreover, lower musical rhythm ability was associated with lower reading ability in dyslexia. However, speech grouping by adults with dyslexia was not impaired when musical rhythm perception ability was controlled: like adults without dyslexia, they showed consistent preferences. However, rhythmic grouping was predicted by musical rhythm perception ability, irrespective of dyslexia. The results suggest associations among musical rhythm perception ability, speech rhythm perception, and reading ability. This highlights the importance of considering individual variability to better understand dyslexia and raises the possibility that musical rhythm perception ability is a key to phonological and reading acquisition.}, language = {en} }